Concentration dependent Zn diffusion in InP during metalorganic vapor phase epitaxy

Concentration dependent diffusion of Zn during metalorganic vapor phase epitaxy from a Zn‐doped InP layer into the adjacent undoped InP buffer layer were studied systematically using secondary ion mass spectroscopy and carrier concentration profiling. Under the condition that the growth rate of the Zn‐doped film is faster than the interdiffusion of Zn into the underlying undoped buffer layer, the diffusion problem can be treated as a one‐dimensional diffusion couple between two semi‐infinite media. Furthermore, Zn diffusion during the optimized growth condition for InP completely eliminates the thermal decomposition problem encountered in the sealed ampoule and open tube diffusions and also maintains all the intrinsic point defects at their thermodynamic equilibrium concentrations. With an optimal growth temperature at 625 °C and a maximum Zn flow below the incorporation limit for substitutional Zn to ensure that the dominant Zn are incorporated substitutionally, the diffusion profiles of Zn across the in...

[1]  K. Kaźmierski,et al.  The Temperature-Dependent Diffusion Mechanism of Zn in InP Using the Semiclosed Diffusion Method , 1984 .

[2]  G. B. Stringfellow Organometallic Vapor-Phase Epitaxy: Theory and Practice , 1989 .

[3]  L. R. Weisberg Diffusion with interstitial-substitutional Equilibrium. Zinc in GaAs , 1963 .

[4]  C. Kazmierski Zn diffusion in doped InP: Interstitial charge state and apparent activation energy , 1988 .

[5]  D. Grützmacher,et al.  Diffusion of Zn acceptors during MOVPE of InP , 1991 .

[6]  N. Chand,et al.  Diffusion of Cd And Zn In InP between 550 and 650°C , 1982 .

[7]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[8]  G. J. V. Gurp,et al.  Zinc diffusion in InGaAsP , 1988 .

[9]  L. Smart,et al.  Solid State Chemistry: An Introduction, Third Edition , 1995 .

[10]  A. Ballman,et al.  Double zinc diffusion fronts in InP—Theory and experiment , 1983 .

[11]  E. F. Schubert,et al.  Doping in III-V Semiconductors , 1993 .

[12]  F. Frank,et al.  Mechanism of Diffusion of Copper in Germanium , 1956 .

[13]  F. Shepherd,et al.  Secondary ion mass spectrometry and electrical characterization of Zn diffusion in n-type InP , 1989 .

[14]  J. Crank,et al.  Diffusion in media with variable properties. Part II.—The effect of a variable diffusion coefficient on the concentration-distance relationship in the non-steady state , 1949 .

[15]  B. Tuck,et al.  Diffusion profiles of zinc in indium phosphide , 1975 .

[16]  H. Serreze,et al.  Diffusion coefficients and activation energies for Zn diffusion into undoped and S‐doped InP , 1987 .

[17]  L. L. Chang The junction depth of concentration-dependent diffusion. Zinc in III–V compounds , 1964 .

[18]  D. Tjaden,et al.  Interstitial and substitutional Zn in InP and InGaAsP , 1989 .

[19]  Ulrich Gösele,et al.  Diffusion of zinc in gallium arsenide: A new model , 1981 .

[20]  K. Heime,et al.  Zinc diffusion in InP using diethylzinc and phosphine , 1992 .

[21]  L. L. Chang,et al.  Diffusion and solubility of zinc in indium phosphide , 1964 .

[22]  K. Kaźmierski,et al.  A Simple Model and Calculation of the Influence of Doping and Intrinsic Concentrations on the Interstitial-Substitutional Diffusion Mechanism: Application to Zn and Cd in InP , 1986 .

[23]  A. W. Nelson,et al.  A study of p-type dopants for InP grown by adduct MOVPE , 1984 .

[24]  D. Tjaden,et al.  Zinc diffusion in n‐type indium phosphide , 1987 .

[25]  H. Serreze,et al.  Zn diffusion in InP: effect of substrate dopant concentration , 1986 .

[26]  R. Saxena,et al.  OMVPE growth of InGaAsP materials for long wavelength detectors and emitters , 1986 .

[27]  U. Gösele,et al.  Mechanism and kinetics of the diffusion of gold in silicon , 1980 .

[28]  G. B. Stringfellow,et al.  Elucidation of the organometallic vapor phase epitaxial growth mechanism for InP , 1987 .

[29]  C. F. Lee On the Solution of Some Diffusion Equations with Concentration-dependent Diffusion Coefficients , 1971 .

[30]  A. Springthorpe,et al.  Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD , 1992 .

[31]  B L H Wilson,et al.  Gallium Arsenide and Related Compounds , 1973 .

[32]  B. Tuck Atomic Diffusion in III–V Semiconductors , 1988 .