A new type of color tunable composite phosphor Y2SiO5:Ce/Y3Al5O12:Ce for field emission displays

A simple but effective strategy was introduced to realize color tunability of a composite phosphor Y2SiO5:Ce/Y3Al5O12:Ce (YSO:Ce/YAG:Ce). The main idea was to use the cathodoluminescence of the YSO:Ce phosphor to additionally pump the photoluminescence of the YAG:Ce phosphor based on radiative energy transfer. Morphology as well as the cathodoluminescence properties of the YSO:Ce/YAG:Ce phosphors were investigated in detail. According to radiative energy transfer, an intense yellow emission with excellent cathodoluminescence properties can be obtained from YSO:Ce/YAG:Ce phosphors under low voltage electron beam excitation. Moreover, the emission color of the composite phosphors can be tuned from yellow to blue through adjusting the YSO:Ce content. The mechanism for the enhanced yellow emission and the color tunability were also discussed. It was experimentally proved that the color gamut and display hue could be greatly enriched and enhanced when employing the YSO:Ce/YAG:Ce composite phosphor as an additional phosphor for the typical tricolor FED phosphors.

[1]  Zhiyu Liu,et al.  A potential cyan-emitting phosphor Sr8(Si4O12)Cl8:Eu2+ for wide color gamut 3D-PDP and 3D-FED , 2013 .

[2]  Hee Jo Song,et al.  RbBaPO4:Eu2+: a new alternative blue-emitting phosphor for UV-based white light-emitting diodes , 2013 .

[3]  Jun Lin,et al.  Hydrothermal derived LaOF:Ln3+ (Ln = Eu, Tb, Sm, Dy, Tm, and/or Ho) nanocrystals with multicolor-tunable emission properties. , 2012, Inorganic chemistry.

[4]  Yichun Liu,et al.  Single-phased white-emitting 12CaO·7Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays , 2012 .

[5]  N. Xu,et al.  High luminescent Li2CaSiO4:Eu2+ cyan phosphor film for wide color gamut field emission display. , 2012, Optics express.

[6]  Yeju Huang,et al.  Color point tuning of Y3Al5O12 : Ce3+ phosphor via Mn2+–Si4+ incorporation for white light generation , 2012 .

[7]  Yuewei Liu,et al.  Intensive green emission of ZnAl2O4:Mn2+ under vacuum ultraviolet and low-voltage cathode ray excitation. , 2012, Optics letters.

[8]  Xiaojun Wang,et al.  Luminescent properties of yellowish orange Y3Al5−xSixO12−xNx:Ce phosphors and their applications in warm white light-emitting diodes , 2012 .

[9]  S. Yin,et al.  Effect of phase structures of TiO2−xNy on the photocatalytic activity of CaAl2O4:(Eu, Nd)-coupled TiO2−xNy , 2012 .

[10]  Jun Lin,et al.  Yellow-emitting NaCaPO4:Mn2+ phosphor for field emission displays. , 2011, Optics express.

[11]  S. Yin,et al.  Novel luminescent photocatalytic deNOx activity of CaAl2O4:(Eu, Nd)/TiO2−xNy composite , 2011 .

[12]  Wei-Ren Liu,et al.  High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes , 2011 .

[13]  Y. Ma,et al.  Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties , 2010 .

[14]  Jun Lin,et al.  Electrospinning Derived One‐Dimensional LaOCl: Ln3+ (Ln = Eu/Sm, Tb, Tm) Nanofibers, Nanotubes and Microbelts with Multicolor‐Tunable Emission Properties , 2010 .

[15]  Jun Lin,et al.  Tm3+ and/or Dy3+ doped LaOCl nanocrystalline phosphors for field emission displays , 2009 .

[16]  O. Zelenskaya,et al.  Cathodoluminescence and scintillation characteristics of YAG:Ce crystals grown by horizontal directional crystallization in a protective atmosphere , 2009 .

[17]  Xiaomin Liu,et al.  LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays , 2008 .

[18]  T. Sekiguchi,et al.  Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays , 2007 .

[19]  K. Soga,et al.  Eu-Doped CaAl2Si2O8 Nanocrystalline Phosphors Crystallized from the CaO – Al2O3 – SiO2 Glass System , 2007 .

[20]  N. Zhang,et al.  Melting salt assisted solgel synthesis of blue phosphor Y 2SiO 5:Ce , 2007 .

[21]  Jun Lin,et al.  Dy3+- and Eu3+-doped LaGaO3 nanocrystalline phosphors for field emission displays , 2006 .

[22]  Sukhvir Singh,et al.  Enhanced luminescence of Y3Al5O12 : Ce3+ nanophosphor for white light-emitting diodes , 2006 .

[23]  Yen-Hwei Chang,et al.  High color purity phosphors of LaAlGe2O7 doped with Tm3+ and Er3+ , 2006 .

[24]  A. V. Rasuleva,et al.  Pulsed cathodoluminescence of yttrium-aluminum garnet in the visible spectral range , 2006 .

[25]  Jiye Fang,et al.  Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material , 2006 .

[26]  B. Yan,et al.  Matrix-Inducing Synthesis of SrxY10−x(SiO4)y(PO4)6−yO2: Eu3+ Micron Crystalline Coral Like Phosphors by Sol-Gel Composition of Hybrid Precursors , 2005 .

[27]  A. Patra,et al.  Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size. , 2005, The journal of physical chemistry. B.

[28]  Shigeo Itoh,et al.  Development of field emission displays , 2004 .

[29]  Chung-Hsin Lu,et al.  Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting , 2002 .

[30]  Reinhart Poprawe,et al.  Longitudinal carrier density measurement of high power broad area laser diodes , 2002 .

[31]  A. Benker,et al.  Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials , 2001 .

[32]  W. J. Thomes,et al.  Advances in field emission display phosphors , 1998, Eleventh International Vacuum Microelectronics Conference. IVMC'98 (Cat. No.98TH8382).

[33]  P. Holloway,et al.  Degradation of ZnS field-emission display phosphors during electron-beam bombardment , 1997 .

[34]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[35]  C. Warde,et al.  Influence of surface charge on the cathodoluminescence of Ce:YAG , 1993 .

[36]  T. Tonegawa,et al.  Degradation Mechanism for Low Voltage Cathodoluminescence of Sulfide Phosphors , 1989 .

[37]  D. Robbins,et al.  The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors I . Intensity and Lifetime Measurements on Undoped and Ce‐Doped , 1979 .

[38]  Kenneth R. Shoulders,et al.  Microelectronics Using Electron-Beam-Activated Machining Techniques , 1961, Adv. Comput..

[39]  C. Feldman Range of 1-10 kev Electrons in Solids , 1960 .