The asymmetric traveling salesman problem on graphs with bounded genus

We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the support graph of the solution of the Held-Karp linear programming relaxation has bounded orientable genus.

[1]  Michel X. Goemans,et al.  Minimum Bounded Degree Spanning Trees , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[2]  Cun-Quan Zhang Circular flows of nearly Eulerian graphs and vertex-splitting , 2002, J. Graph Theory.

[3]  Alan M. Frieze,et al.  On the worst-case performance of some algorithms for the asymmetric traveling salesman problem , 1982, Networks.

[4]  F. Jaeger ON CIRCULAR FLOWS IN GRAPHS , 1984 .

[5]  Mohit Singh,et al.  Improved Approximation Ratios for Traveling Salesperson Tours and Paths in Directed Graphs , 2007, APPROX-RANDOM.

[6]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[7]  Pavol Hell,et al.  High-Girth Graphs Avoiding a Minor are Nearly Bipartite , 2001, J. Comb. Theory, Ser. B.

[8]  Erik D. Demaine,et al.  Approximation algorithms via contraction decomposition , 2007, SODA '07.

[9]  Sándor P. Fekete,et al.  Minimizing the Stabbing Number of Matchings, Trees, and Triangulations , 2003, SODA '04.

[10]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Michel X. Goemans,et al.  On the Integrality Ratio for the Asymmetric Traveling Salesman Problem , 2006, Math. Oper. Res..

[12]  Sariel Har-Peled,et al.  Approximating Spanning Trees with Low Crossing Number , 2009, ArXiv.

[13]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[14]  Bojan Mohar,et al.  Embedding graphs in an arbitrary surface in linear time , 1996, STOC '96.

[15]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[16]  Amin Saberi,et al.  An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem , 2010, SODA '10.

[17]  J. C. Caughman Non-Separating Embeddings of Graphs in Closed Surfaces , 1999 .

[18]  Robert D. Carr,et al.  Towards a 4/3 approximation for the asymmetric traveling salesman problem , 1999, SODA '00.

[19]  Moshe Lewenstein,et al.  Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs , 2005, JACM.

[20]  Paul Seymour,et al.  Nowhere-zero flows , 1996 .

[21]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[22]  Mohit Singh,et al.  On the Crossing Spanning Tree Problem , 2004, APPROX-RANDOM.

[23]  Philip N. Klein,et al.  A linear-time approximation scheme for planar weighted TSP , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[24]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[25]  Chandra Chekuri,et al.  Dependent Randomized Rounding for Matroid Polytopes and Applications , 2009, 0909.4348.

[26]  Markus Bläser,et al.  A new approximation algorithm for the asymmetric TSP with triangle inequality , 2003, TALG.