Hermitian rank distance codes

Let $$X=X(n,q)$$X=X(n,q) be the set of $$n\times n$$n×n Hermitian matrices over $$\mathbb {F}_{q^2}$$Fq2. It is well known that X gives rise to a metric translation association scheme whose classes are induced by the rank metric. We study d-codes in this scheme, namely subsets Y of X with the property that, for all distinct $$A,B\in Y$$A,B∈Y, the rank of $$A-B$$A-B is at least d. We prove bounds on the size of a d-code and show that, under certain conditions, the inner distribution of a d-code is determined by its parameters. Except if n and d are both even and $$4\le d\le n-2$$4≤d≤n-2, constructions of d-codes are given, which are optimal among the d-codes that are subgroups of $$(X,+)$$(X,+). This work complements results previously obtained for several other types of matrices over finite fields.

[1]  Kai-Uwe Schmidt,et al.  Symmetric bilinear forms over finite fields of even characteristic , 2010, J. Comb. Theory A.

[2]  John Sheekey,et al.  Rank properties of subspaces of symmetric and hermitian matrices over finite fields , 2011, Finite Fields Their Appl..

[3]  Jean-Marie Goethals,et al.  Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.

[4]  Z. Wan,et al.  Geometry of Matrices: In Memory of Professor L K Hua (1910 – 1985) , 1996 .

[5]  Frédéric Vanhove The Maximum Size of a Partial Spread in H(4n+1, q2) is q2n+1+1 , 2009, Electron. J. Comb..

[6]  Alfred Wassermann,et al.  Algebraic structures of MRD codes , 2015, Adv. Math. Commun..

[7]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[8]  Leonard Carlitz,et al.  Representations by Hermitian forms in a finite field , 1955 .

[9]  Frédéric Vanhove A geometric proof of the upper bound on the size of partial spreads in H(4n+1, q2) , 2011, Adv. Math. Commun..

[10]  F. Ihringer A new upper bound for constant distance codes of generators on hermitian polar spaces of type H(2d − 1, q2) , 2014 .

[11]  Qing Xiang,et al.  New bounds for partial spreads of H(2d - 1, q2) and partial ovoids of the Ree-Tits octagon , 2018, J. Comb. Theory, Ser. A.

[12]  Kai-Uwe Schmidt,et al.  Symmetric bilinear forms over finite fields with applications to coding theory , 2014, Journal of Algebraic Combinatorics.

[13]  Dany-Jack Mercier The number of solutions of the equation Tr F t /F s (f(x)+v. x)=b and some applications , 2004 .

[14]  Elisa Gorla,et al.  Rank-metric codes , 2019, ArXiv.

[15]  Jan De Beule,et al.  Partial ovoids and partial spreads in hermitian polar spaces , 2008, Des. Codes Cryptogr..

[16]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[17]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[19]  Z. Wan,et al.  Geometry of Matrices , 1996 .

[20]  Philippe Delsarte,et al.  Association Schemes and Coding Theory , 1998, IEEE Trans. Inf. Theory.

[21]  Dennis Stanton,et al.  A Partially Ordered Set and q-Krawtchouk Polynomials , 1981, J. Comb. Theory, Ser. A.

[22]  John Sheekey,et al.  Constant Rank-Distance Sets of Hermitian Matrices and Partial Spreads in Hermitian Polar Spaces , 2014, Electron. J. Comb..

[23]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[24]  William J. Martin,et al.  Commutative association schemes , 2008, Eur. J. Comb..

[26]  Ernst M. Gabidulin,et al.  Symmetric matrices and codes correcting rank errors beyond the [(d-1)/2] bound , 2006, Discret. Appl. Math..