On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces

In spite of the success of the multi-objective evolutionary algorithm based on decomposition (MOEA/D), the generation of weights for problems having many objectives, continues to be an open research problem. In this paper, we introduce a new methodology based on low-discrepancy sequences to generate the weights vectors employed by MOEA/D. We analyze and compare the proposed methodology using different low-discrepancy sequences and its impact in the search process of MOEA/D. The proposed approach is evaluated in problems having many objective functions (up to 15 objectives). We show the flexibility and ease of use of this type of sequences when adopting them to generate the weights of MOEA/D.

[1]  K. F. Roth,et al.  Rational approximations to algebraic numbers , 1955 .

[2]  P. Bohl,et al.  Über ein in der Theorie der säkularen Störungen vorkommendes Problem. , 1909 .

[3]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[4]  Gerhard Larcher On the distribution of s-dimensional Kronecker-sequences , 1988 .

[5]  D. Ridout Rational approximations to algebraic numbers , 1957 .

[6]  H. Scheffé The Simplex‐Centroid Design for Experiments with Mixtures , 1963 .

[7]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[8]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[9]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[10]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[11]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[12]  M. Agha,et al.  Experiments with Mixtures , 1992 .

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[15]  John A. Cornell,et al.  Some Comments on Designs for Cox's Mixture Polynomial , 1975 .

[16]  Saúl Zapotecas Martínez,et al.  Using a Family of Curves to Approximate the Pareto Front of a Multi-Objective Optimization Problem , 2014, PPSN.

[17]  Junichi Suzuki,et al.  R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[18]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  Shengxiang Yang,et al.  Diversity Comparison of Pareto Front Approximations in Many-Objective Optimization , 2014, IEEE Transactions on Cybernetics.

[21]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[22]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[23]  Chongguo Li,et al.  Diversity Metrics in Multi-objective Optimization: Review and Perspective , 2007, 2007 IEEE International Conference on Integration Technology.

[24]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[25]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[26]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[27]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[28]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[29]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[30]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[31]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[32]  Jinhua Zheng,et al.  Spread Assessment for Evolutionary Multi-Objective Optimization , 2009, EMO.

[33]  A. Farhang-Mehr,et al.  Diversity assessment of Pareto optimal solution sets: an entropy approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).