On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces
暂无分享,去创建一个
Saúl Zapotecas Martínez | Kiyoshi Tanaka | Carlos A. Coello Coello | Hernán E. Aguirre | C. Coello | Kiyoshi Tanaka | H. Aguirre
[1] K. F. Roth,et al. Rational approximations to algebraic numbers , 1955 .
[2] P. Bohl,et al. Über ein in der Theorie der säkularen Störungen vorkommendes Problem. , 1909 .
[3] Qingfu Zhang,et al. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.
[4] Gerhard Larcher. On the distribution of s-dimensional Kronecker-sequences , 1988 .
[5] D. Ridout. Rational approximations to algebraic numbers , 1957 .
[6] H. Scheffé. The Simplex‐Centroid Design for Experiments with Mixtures , 1963 .
[7] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[8] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[9] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[10] Marco Laumanns,et al. Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.
[11] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[12] M. Agha,et al. Experiments with Mixtures , 1992 .
[13] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[14] Kalyanmoy Deb,et al. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.
[15] John A. Cornell,et al. Some Comments on Designs for Cox's Mixture Polynomial , 1975 .
[16] Saúl Zapotecas Martínez,et al. Using a Family of Curves to Approximate the Pareto Front of a Multi-Objective Optimization Problem , 2014, PPSN.
[17] Junichi Suzuki,et al. R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.
[18] Jeffrey Horn,et al. Multicriterion decision making , 1997 .
[19] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[20] Shengxiang Yang,et al. Diversity Comparison of Pareto Front Approximations in Many-Objective Optimization , 2014, IEEE Transactions on Cybernetics.
[21] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[22] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[23] Chongguo Li,et al. Diversity Metrics in Multi-objective Optimization: Review and Perspective , 2007, 2007 IEEE International Conference on Integration Technology.
[24] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[25] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[26] Charles Gide,et al. Cours d'économie politique , 1911 .
[27] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[28] Lothar Thiele,et al. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.
[29] David W. Corne,et al. Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..
[30] C. A. Coello Coello,et al. A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.
[31] Jason R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .
[32] Jinhua Zheng,et al. Spread Assessment for Evolutionary Multi-Objective Optimization , 2009, EMO.
[33] A. Farhang-Mehr,et al. Diversity assessment of Pareto optimal solution sets: an entropy approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).