Bootstrapping correlation functions in N = 4 SYM

We describe a new approach to computing the chiral part of correlation functions of stresstensor supermultiplets in N = 4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functions are given by a linear combination of chiral N = 4 superconformal invariants accompanied by coefficient functions depending on the space-time coordinates only. We present the explicit construction of these invariants and show that the six-point correlation function is fixed in the Born approximation up to four constant coefficients by its symmetries. In addition, the known asymptotic structure of the correlation function in the light-like limit fixes unambiguously these coefficients up to an overall normalization. We demonstrate that the same approach can be applied to obtain a representation for the six-point NMHV amplitude that is free from any auxiliary gauge fixing parameters, does not involve spurious poles and manifests half of the dual superconformal symmetry. Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR 5108 Unité Mixte de Recherche 3681 du CNRS

[1]  G. Korchemsky,et al.  Four-point correlation function of stress-energy tensors in N = 4 superconformal theories , 2015 .

[2]  L. Mason,et al.  Correlation functions of the chiral stress-tensor multiplet in N=4 SYM , 2014, 1412.8718.

[3]  G.P.Korchemsky,et al.  N=4 superconformal Ward identities for correlation functions , 2014, 1409.2502.

[4]  P. Heslop,et al.  Local integrands for the five-point amplitude in planar N=4 SYM up to five loops , 2013, 1312.1163.

[5]  Jeffrey Pennington,et al.  Leading singularities and off-shell conformal integrals , 2013, 1303.6909.

[6]  G. Korchemsky,et al.  The super-correlator/super-amplitude duality: Part II , 2011, 1103.4353.

[7]  G. Korchemsky,et al.  Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N=4 SYM , 2012, 1201.5329.

[8]  G. Korchemsky,et al.  Hidden symmetry of four-point correlation functions and amplitudes in N=4 SYM , 2011, 1108.3557.

[9]  N. Arkani-Hamed,et al.  A note on polytopes for scattering amplitudes , 2010, 1012.6030.

[10]  G. Korchemsky,et al.  More on the duality correlators/amplitudes , 2010, 1009.2488.

[11]  L. Mason,et al.  A Proof of the Supersymmetric Correlation Function / Wilson Loop Correspondence , 2011, 1103.4119.

[12]  J. Maldacena,et al.  From correlation functions to Wilson loops , 2010, 1007.3243.

[13]  G. Korchemsky,et al.  From correlation functions to scattering amplitudes , 2010, 1007.3246.

[14]  G. Korchemsky,et al.  Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory , 2008, 0807.1095.

[15]  L. Mason,et al.  Dual superconformal invariance, momentum twistors and Grassmannians , 2009, 0909.0250.

[16]  G. Arutyunov,et al.  Four-point functions of lowest weight chiral primary operators in N = 4 four-dimensional supersymmetric Yang-Mills theory in the supergravity approximation , 2000 .

[17]  G. Rossi,et al.  Anomalous dimensions in N=4 SYM theory at order g^4 , 2000, hep-th/0003203.

[18]  C. Schubert,et al.  Three-loop four-point correlator in N=4 SYM , 2000, hep-th/0003096.

[19]  C. Schubert,et al.  Explicit construction of nilpotent covariants in N=4 SYM , 1999, hep-th/9910011.

[20]  S. Mathur,et al.  Graviton exchange and complete four-point functions in the AdS/CFT correspondence , 1999, hep-th/9903196.

[21]  P. Howe On harmonic superspace , 1998, hep-th/9812133.

[22]  I. Park,et al.  A note on four-point functions of conformal operators in N=4 Super-Yang Mills , 1998, hep-th/9811155.

[23]  K. Intriligator Bonus symmetries of N = 4 super-Yang-Mills correlation functions via AdS duality , 1998, hep-th/9811047.

[24]  P. Howe,et al.  (N, p, q) harmonic superspace , 1994, hep-th/9412147.

[25]  E Ivanov,et al.  Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace , 1984 .