Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters

Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the 'cortical' interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.

[1]  É. Blesbois,et al.  Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. , 1999, Poultry science.

[2]  Michael Unser,et al.  Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics , 2005, IEEE Transactions on Image Processing.

[3]  Samara L. Reck-Peterson,et al.  Regulatory ATPase Sites of Cytoplasmic Dynein Affect Processivity and Force Generation*S⃞ , 2008, Journal of Biological Chemistry.

[4]  Y. Hiramoto,et al.  Analysis of the Role of Astral Rays in Pronuclear Migration in Sand Dollar Eggs by the Colcemid‐UV Method , 1986, Development, growth & differentiation.

[5]  Anthony A. Hyman,et al.  Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo , 2001, Nature.

[6]  Tamir Gonen,et al.  Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis , 2007, Nature Cell Biology.

[7]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[8]  E. Salmon,et al.  Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies , 1988, The Journal of cell biology.

[9]  Tamir Gonen,et al.  Tension directly stabilizes reconstituted kinetochore-microtubule attachments , 2010, Nature.

[10]  A. Mogilner,et al.  Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: A Computational Study , 2010, Molecular biology of the cell.

[11]  J. Cooper,et al.  Microtubule Interactions with the Cell Cortex Causing Nuclear Movements in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[12]  R. Vallee,et al.  ZW10 Function in Mitotic Checkpoint Control, Dynein Targeting, and Membrane Trafficking: Is Dynein the Unifying Theme? , 2006, Cell cycle.

[13]  S. Fuller,et al.  Centrosome polarization delivers secretory granules to the immunological synapse , 2006, Nature.

[14]  J. McIntosh,et al.  Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. , 2008, Molecular biology of the cell.

[15]  V. Doye,et al.  A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing , 2001, The Journal of cell biology.

[16]  P. Gönczy,et al.  Coupling of cortical dynein and Gα proteins mediates spindle positioning in Caenorhabditis elegans , 2007, Nature Cell Biology.

[17]  Samara L. Reck-Peterson,et al.  Single-Molecule Analysis of Dynein Processivity and Stepping Behavior , 2006, Cell.

[18]  S. Ishiwata,et al.  The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends , 2011, Nature Cell Biology.

[19]  B. Yurke,et al.  Microtubule Dynamics and the Positioning of Microtubule Organizing Centers , 1998 .

[20]  I. Tolic-Nørrelykke,et al.  Self-Organization of Dynein Motors Generates Meiotic Nuclear Oscillations , 2009, PLoS biology.

[21]  J. McIntosh,et al.  Minus-end-directed motion of kinesin–coated microspheres driven by microtubule depolymerization , 1995, Nature.

[22]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[23]  C. Rieder,et al.  The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants , 2000, Nature Cell Biology.

[24]  P. Nurse,et al.  How Fission Yeast Fission in the Middle , 1996, Cell.

[25]  Liedewij Laan,et al.  In vitro assays to study force generation at dynamic microtubule ends. , 2010, Methods in cell biology.

[26]  J. Howard,et al.  Elastic and damping forces generated by confined arrays of dynamic microtubules , 2006, Physical biology.

[27]  S. Leibler,et al.  Assembly and positioning of microtubule asters in microfabricated chambers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Yurke,et al.  Measurement of the force-velocity relation for growing microtubules. , 1997, Science.

[29]  Anthony A Hyman,et al.  Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. , 2004, Annual review of cell and developmental biology.

[30]  J. Husson,et al.  Force-generation and dynamic instability of microtubule bundles , 2008, Proceedings of the National Academy of Sciences.

[31]  C. Faivre-Moskalenko,et al.  Dynamics of microtubule asters in microfabricated chambers: The role of catastrophes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Yuh Nung Jan,et al.  Asymmetric cell division , 1998, Nature.

[33]  Y. Hiraoka,et al.  Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. , 2001, Molecular biology of the cell.

[34]  Marileen Dogterom,et al.  Dynamic instability of microtubules is regulated by force , 2003, The Journal of cell biology.

[35]  B. Slepchenko,et al.  Centrosome positioning in interphase cells , 2003, The Journal of cell biology.

[36]  J. McIntosh,et al.  Force production by disassembling microtubules , 2005, Nature.

[37]  J. Clarke,et al.  A Polarised Population of Dynamic Microtubules Mediates Homeostatic Length Control in Animal Cells , 2010, PLoS biology.

[38]  Andrew D. Franck,et al.  The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion , 2009, Cell.

[39]  B. Mickey,et al.  Rigidity of microtubules is increased by stabilizing agents , 1995, The Journal of cell biology.

[40]  T. Mitchison,et al.  How does a millimeter-sized cell find its center? , 2009, Cell cycle.

[41]  Cleopatra Kozlowski,et al.  Cortical Microtubule Contacts Position the Spindle in C. elegans Embryos , 2007, Cell.

[42]  R. Vallee,et al.  Dynein at the cortex. , 2002, Current opinion in cell biology.

[43]  S. Simon,et al.  Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge , 2003, Journal of Cell Science.

[44]  J Richard McIntosh,et al.  Tubulin depolymerization may be an ancient biological motor , 2010, Journal of Cell Science.

[45]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[46]  Kenji Kimura,et al.  Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo , 2010, Proceedings of the National Academy of Sciences.

[47]  M. Dogterom,et al.  Three-dimensional control of protein patterning in microfabricated devices. , 2005, Nano letters.

[48]  Samara L. Reck-Peterson,et al.  Force-Induced Bidirectional Stepping of Cytoplasmic Dynein , 2007, Cell.

[49]  J. Schwartz,et al.  Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position , 1999, The EMBO journal.

[50]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[51]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[52]  Marileen Dogterom,et al.  Force generation by dynamic microtubules. , 2005, Current opinion in cell biology.

[53]  M. Srayko,et al.  Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning , 2011, The Journal of cell biology.

[54]  S. O’Rourke,et al.  Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex , 2010, Nature Cell Biology.

[55]  G. C. Rogers,et al.  Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos , 2000, Nature Cell Biology.

[56]  Scott V. Bratman,et al.  Establishing New Sites of Polarization by Microtubules , 2009, Current Biology.

[57]  J. Labbé,et al.  PAR Proteins Regulate Microtubule Dynamics at the Cell Cortex in C. elegans , 2003, Current Biology.

[58]  P. Monzo,et al.  Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment , 2008, The Journal of cell biology.