Nanosatellite optical downlink experiment: design, simulation, and prototyping

Abstract. The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10  Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.

[1]  Clark Person,et al.  QbX - The CubeSat Experiment , 2012 .

[2]  Norman Fitz-Coy,et al.  Optical time transfer for future disaggregated small satellite navigation systems , 2014 .

[3]  Darren Rowen,et al.  3-Axis Attitude Determination and Control of the AeroCube-4 CubeSats , 2013 .

[4]  Mike Johnson,et al.  Nanoracks CubeSat Deployment Services , 2014 .

[5]  F. Berghmans,et al.  High total dose radiation effects on temperature sensing fiber Bragg gratings , 1999, IEEE Photonics Technology Letters.

[6]  David O. Caplan,et al.  Compact optical transmitters for CubeSat free-space optical communications , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[7]  Eiji Okamoto,et al.  In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links , 2016, SPIE LASE.

[8]  Harrison Brodsky Smith,et al.  NASAs EDSN Aims to Overcome the Operational Challenges of CubeSat Constellations and Demonstrate an Economical Swarm of 8 CubeSats Useful for Space Science Investigations , 2013 .

[9]  Neal Erickson,et al.  Nanosatellites for earth environmental monitoring: The MicroMAS project , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[10]  David Krejci,et al.  A survey and assessment of the capabilities of Cubesats for Earth observation , 2012 .

[11]  Meera Srinivasan,et al.  A post-processing receiver for the lunar laser communications demonstration project , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[12]  Kevin Dale Stout Bayesian-based simulation model validation for spacecraft thermal systems , 2015 .

[13]  Keith E. Wilson,et al.  Overview of the Laser Communications Relay Demonstration Project , 2012 .

[14]  Hamid Hemmati,et al.  Optical Satellite Communications , 2013 .

[15]  Xiaoli Sun,et al.  Innovative free space optical communication and navigation system with high data rate communication, precision ranging, range rate measurements, and accurate spacecraft pointing , 2016, SPIE LASE.

[16]  Matthew E. Grein,et al.  LLCD operations using the Lunar Lasercom Ground Terminal , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[17]  F. Schmidt,et al.  TID Tolerance of Popular CubeSat Components , 2013, 2013 IEEE Radiation Effects Data Workshop (REDW).

[18]  Jennifer Kingston,et al.  6U CubeSat design for Earth observation with 6.5m GSD, five spectral bands and 14Mbps downlink , 2010 .

[19]  Cordell Grant,et al.  On-Orbit Performance of the Bright Target Explorer (BRITE) Nanosatellite Astronomy Constellation , 2014 .

[20]  Robert M. Gagliardi,et al.  Slot Synchronization in Optical PPM Communications , 1986, IEEE Trans. Commun..

[21]  Ryan W Kingsbury,et al.  Optical communications for small satellites , 2015 .

[22]  William T. Roberts,et al.  LLCD operations using the Optical Communications Telescope Laboratory (OCTL) , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[23]  Zoran Sodnik,et al.  OICETS on-orbit laser communication experiments , 2006, SPIE LASE.

[24]  B. Felton,et al.  Improved Climatological Characterization of Optical Turbulence for Space Optical Imaging and Communications , 2010 .

[25]  Shu Lin,et al.  Error Control Coding , 2004 .

[26]  Michael J. Wright,et al.  Space Technology Mission Directorate Game Changing Development Program , 2018 .

[27]  Bryan S. Robinson,et al.  Overview and results of the Lunar Laser Communication Demonstration , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[28]  Kathleen Riesing,et al.  Development of a pointing, acquisition, and tracking system for a CubeSat optical communication module , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[29]  Don M. Boroson,et al.  Design of an Optical Photon Counting Array Receiver System for Deep-Space Communications , 2007, Proceedings of the IEEE.

[30]  Byung-Hoon Lee,et al.  New Star Pattern Identification with Vector Pattern Matching for Attitude Determination , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Hyochoong Bang,et al.  New Star-Pattern Identification Using a Correlation Approach for Spacecraft Attitude Determination , 2011 .

[32]  Kerri Cahoy,et al.  Implementation and validation of a CubeSat laser transmitter , 2016, SPIE LASE.

[33]  Eleonora Atzeni,et al.  Direct Metal Laser Sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications , 2013 .

[34]  Anne Dorothy Marinan From CubeSats to constellations : systems design and performance analysis , 2013 .

[35]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[36]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[37]  K. Wilson,et al.  Preliminary Characterization Results of the Optical Communications Telescope Laboratory Telescope , 2005 .

[38]  D. M. Boroson,et al.  Downlink synchronization for the lunar laser communications demonstration , 2011, 2011 International Conference on Space Optical Systems and Applications (ICSOS).

[39]  Michael Swartwout Secondary spacecraft in 2015: Analyzing success and failure , 2015, 2015 IEEE Aerospace Conference.

[40]  K. Huemmrich,et al.  Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response , 2015 .

[41]  Cordell Grant,et al.  Canadian Advanced Nanospace Experiment 2 Orbit Operations: One Year of Pushing the Nanosatellite Performance Envelope , 2009 .

[42]  James B. Abshire,et al.  A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LiDAR measurements , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[43]  Joseph A. Shaw,et al.  Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility , 2013 .

[44]  Andrew Chin,et al.  Attitude Control on the Pico Satellite Solar Cell Testbed-2 , 2012 .

[45]  O. Gilard,et al.  A model for the prediction of EDFA gain in a space radiation environment , 2004, IEEE Photonics Technology Letters.

[46]  Michael Swartwout,et al.  The First One Hundred CubeSats: A Statistical Look , 2013 .

[47]  Kathleen Riesing,et al.  Development of a pointing, acquisition, and tracking system for a nanosatellite laser communications module , 2015 .

[48]  Grant Bonin,et al.  CanX–4 and CanX–5 Precision Formation Flight: Mission Accomplished! , 2015 .

[49]  Paul Serra,et al.  A Novel, Low Power Optical Communication Instrument for Small Satellites , 2015 .

[50]  Joseph M. Kahn,et al.  Communication techniques and coding for atmospheric turbulence channels , 2007 .

[51]  R. W. Kingsbury,et al.  Fast-steering solutions for cubesat-scale optical communications , 2017, International Conference on Space Optics.

[52]  B. Moision,et al.  An Approximate Link Equation for the Direct-Detected Optical PPM Link , 2014 .

[53]  Xiaoli Sun,et al.  Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop , 1990, IEEE Trans. Commun..

[54]  Paul Crawford,et al.  SGP4 Orbit Determination , 2008 .

[55]  Barbara A. Cohen,et al.  Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat , 2015 .

[56]  R. Kingsbury,et al.  SSC 14-IX-6 Design of a Free-Space Optical Communication Module for Small Satellites , 2014 .

[57]  F.M. Davidson,et al.  Slot clock recovery in optical PPM communication systems with avalanche photodiode photodetectors , 1989, IEEE Trans. Commun..

[58]  Todd S. Rose,et al.  CUBESAT-SCALE LASER COMMUNICATIONS , 2015 .

[59]  Jason Anderson,et al.  CubeSats in Detail A Survey of CubeSat Communication Systems , 2009 .

[60]  Kathleen Riesing,et al.  Satellite Tracking System using Amateur Telescope and Star Camera for Portable Optical Ground Station , 2016 .

[61]  F. Davidson,et al.  Timing recovery in free space direct detection optical communication systems with PPM signaling , 1989, IEEE International Conference on Communications, World Prosperity Through Communications,.

[62]  Gotthard Oppenhauser,et al.  In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX , 2002, SPIE LASE.

[63]  M. Srinivasan,et al.  Optical PPM synchronization for photon counting receivers , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[64]  Hamid Hemmati,et al.  Near-Earth Laser Communications , 2009, Near-Earth Laser Communications.

[65]  Jian Guo,et al.  Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology , 2010 .

[66]  T. S. Rose,et al.  LEO to ground optical communications from a small satellite platform , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[67]  K. Cahoy,et al.  Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance , 2016 .