Spectral-element and adjoint methods in seismology

We provide an introduction to the use of the spectral-element method (SEM) in seismology. Following a brief review of the basic equations that govern seismic wave propagation, we discuss in some detail how these equations may be solved numerically based upon the SEM to address the forward problem in seismology. Examples of synthetic seismograms calculated based upon the SEM are compared to data recorded by the Global Seismographic Network. Finally, we discuss the challenge of using the remaining differences between the data and the synthetic seismograms to constrain better Earth models and source descriptions. This leads naturally to adjoint methods, which provide a practical approach to this formidable computational challenge and enables seismologists to tackle the inverse problem.

[1]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[2]  Jean-Pierre Vilotte,et al.  Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids , 2006 .

[3]  A. Chopra,et al.  Perfectly matched layers for time-harmonic elastodynamics of unbounded domains : Theory and finite-element implementation , 2003 .

[4]  Albert Tarantola,et al.  Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .

[5]  Peter S. Pacheco Parallel programming with MPI , 1996 .

[6]  Beth A. Wingate,et al.  A generalized diagonal mass matrix spectral element method for non-quadrilateral elements , 2000 .

[7]  D. Komatitsch,et al.  The Spectral-Element Method, Beowulf Computing, and Global Seismology , 2002, Science.

[8]  Tiankai Tu,et al.  High Resolution Forward And Inverse Earthquake Modeling on Terascale Computers , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[9]  Guust Nolet,et al.  Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .

[10]  Chen Ji,et al.  A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[11]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[12]  Alfio Quarteroni,et al.  Generalized Galerkin approximations of elastic waves with absorbing boundary conditions , 1998 .

[13]  D. Komatitsch,et al.  Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method , 2004 .

[14]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[15]  Géza Seriani,et al.  3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor , 1998 .

[16]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[17]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[18]  Jean-Pierre Vilotte,et al.  Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models , 2003 .

[19]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[20]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[21]  3-D Sensitivity Kernels for Surface Wave Observables , 2002 .

[22]  George Biros,et al.  Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[23]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[24]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[25]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[26]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[27]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[28]  Kim B. Olsen,et al.  Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models , 2005 .

[29]  Roland Martin,et al.  WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES , 2001 .

[30]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[31]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[32]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[33]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[34]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[35]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[36]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[37]  Carl Tape,et al.  Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .

[38]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[39]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[40]  Jeroen Tromp,et al.  Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods , 2008 .

[41]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[42]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[43]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .