Performability Analysis and Validation of a Large Scale Fieldbus System by Formal Methods

The complexity of large scale fieldbus systems is two-fold: message-sending concurrency and emergent bus behavior. On the one hand, an increase in the number of accumulating nodes within one fieldbus system expands its message-sending concurrency; on the other hand, the growth of emergent bus behavior causes a temporary or lasting message burst on the fieldbus channel. The message sequences in turn have an increased burst behavior, aggravating the traffic density. Therefore, this dissertation evaluates the performability of large scale fieldbus systems by presenting a busload validation procedure by formal methods. The model concept is conceptualized and formulated by UMLCD and OSI Model. Furthermore, the validation procedure is formalized and structurally specified by applying the attribute hierarchy and BMW principle. Based on sorting the message-sending occurrences from the log data of a real fieldbus-based building automation system, the validation procedure is thus quantified with the real system timed-parameters. In addition, the stochastic distributions of message transmissions are determined by the goodness of fit method. The entire work is based on DSPN as formal means of descriptions and models. The corresponding Petri net communication model is hierarchically constructed, which has been further parameterized, integrated and simulated. The analysis of system complexity is provided by the programming-based extension of the Petri net communication model. In addition, the results of Monte-Carlo-Simulation have been sorted, analyzed and evaluated regarding the validation aspects of system performability. Finally, the emergent message burst generated from the function interrelations has also been observed and evaluated. The result of this work will make a formal contribution to the improvement the fieldbus specification.

[1]  Eckehard Schnieder,et al.  Online monitoring of a distributed building automation system to verify large sequences of bus messages by causal Petri net models , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[2]  Eckehard Schnieder,et al.  Verification of the safety communication protocol in train control system using colored Petri net , 2012, Reliab. Eng. Syst. Saf..

[3]  Hartmut Ehrig Petri Net Technology for communication-based systems : advances in Petri Nets , 2003 .

[4]  Eckehard Schnieder,et al.  KNOWLEDGE-BASED DECISION SUPPORT SYSTEM FOR REAL-TIME TRAIN TRAFFIC CONTROL. , 1999 .

[5]  Ivar Jacobson,et al.  The Unified Modeling Language User Guide , 1998, J. Database Manag..

[6]  F. Jean-PierreThomesse Fieldbus Technology in Industrial Automation , 2022 .

[7]  Eckehard Schnieder,et al.  Strukturierte Modellierung, Simulation und Überwachung verteilter Automatisierungssysteme , 2015, Autom..

[8]  Harald Schrom Realisierung eines optimierten Feldbussystems und Modellierung mit Petrinetzen , 2003 .

[9]  Francisco Javier González-Castaño,et al.  A Review of Aeronautical Electronics and Its Parallelism With Automotive Electronics , 2011, IEEE Transactions on Industrial Electronics.

[10]  Eckehard Schnieder,et al.  Message Collision and CSMA/CA Modeling and Simulation by Means of Petri Net , 2013, 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery.

[11]  Michael K. Molloy Performance Analysis Using Stochastic Petri Nets , 1982, IEEE Transactions on Computers.

[12]  Christoph Lindemann Performance analysis of complex systems by deterministic and stochastic Petri Net models , 1992 .

[13]  Daniele Marioli,et al.  Sensor interfaces: from field-bus to Ethernet and Internet , 2002 .

[14]  Taskin Koçak,et al.  Smart Grid Technologies: Communication Technologies and Standards , 2011, IEEE Transactions on Industrial Informatics.

[15]  Walter L. Smith Probability and Statistics , 1959, Nature.

[16]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[17]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[18]  C. V. Ramamoorthy,et al.  Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets , 1980, IEEE Transactions on Software Engineering.

[19]  Eckehard Schnieder,et al.  Holistic modeling of complex systems with Petri nets , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[20]  Thomas Nolte,et al.  Integrating reliability and timing analysis of CAN-based systems , 2002, IEEE Trans. Ind. Electron..

[21]  M. Simon Probability distributions involving Gaussian random variables : a handbook for engineers and scientists , 2002 .

[22]  J. M. D. Dias Pereira A fieldbus prototype for educational purposes , 2004, IEEE Instrumentation & Measurement Magazine.

[23]  C. Petri Kommunikation mit Automaten , 1962 .

[24]  Eckehard Schnieder,et al.  Consumer load measurement in automated buildings , 2014 .

[26]  Christoph Lindemann,et al.  Performance Modelling with Deterministic and Stochastic Petri Nets , 1998, PERV.

[27]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[28]  I. Zimmermann,et al.  Zuverlässigkeitsbewertung komplexer Systeme mit Stochastischen Petri-Netzen und TimeNET , 2015 .

[29]  Eckehard Schnieder,et al.  Modelling of Continuous-discrete Systems with Hybrid Petri Nets , 1998 .

[30]  Rolf Ernst,et al.  SmallCAN-A Reliable , Low-Power and Low-Cost Distributed Embedded System for Energy Efficient Building Automation , 2011 .

[31]  E. Schnieder,et al.  Techniken und Methoden , 2013 .

[32]  Erwin Kristen,et al.  A Methodology for Design, Validation and Performance Analysis of Vehicle Electronic Control Systems , 2013 .

[33]  Eckehard Schnieder,et al.  Determining Traffic Delays through Simulation , 2001 .

[34]  Eckehard Schnieder,et al.  Das Petrinetz Modellierungs- und -analysetool Π-Tool , 2014, Autom..

[35]  Martin Wollschlaeger,et al.  Feldbussysteme - Historie, Eigenschaften und Entwicklungstrends , 2000, Informationstechnik Tech. Inform..

[36]  Eckehard Schnieder,et al.  Conceptual foundation of dependable systems modelling , 2009 .

[37]  Jang-Myung Lee,et al.  Fieldbus Network System Using Dynamic Precedence Queue (DPQ) Algorithm in CAN Network , 2014, ICIRA.

[38]  Rachad Mahmoud Sicherheits- und Verfügbarkeitsanalyse komplexer Kfz-Systeme , 2006 .

[39]  Lars Schnieder Formalisierte Terminologien technischer Systeme und ihrer Zuverlässigkeit , 2009 .

[40]  Robert Bosch,et al.  CAN with Flexible Data-Rate , 2012 .

[41]  Hermann Kopetz,et al.  Real-time systems , 2018, CSC '73.

[42]  Carlos Eduardo Cugnasca,et al.  Modeling of Collision Resolution Algorithm in LonWorks Networks , 2007 .