Quantification and interpretation of the climate variability record

Abstract The spectral view of variability is a compelling and adaptable tool for understanding variability of the climate. In Mitchell (1976) seminal paper, it was used to express, on one graph with log scales, a very wide range of climate variations from millions of years to days. The spectral approach is particularly useful for suggesting causal links between forcing variability and climate response variability. However, a substantial degree of variability is intrinsic and the Earth system may respond to external forcing in a complex manner. There has been an enormous amount of work on understanding climate variability over the last decades. Hence in this paper, we address the question: Can we (after 40 years) update the Mitchell (1976) diagram and provide it with a better interpretation? By reviewing both the extended observations available for such a diagram and new methodological developments in the study of the interaction between internal and forced variability over a wide range of timescales, we give a positive answer to this question. In addition, we review alternative approaches to the spectral decomposition and pose some challenges for a more detailed quantification of climate variability.

[1]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems , 2011 .

[2]  Eli Tziperman,et al.  A sea ice climate switch mechanism for the 100‐kyr glacial cycles , 2001 .

[3]  T. Crowley,et al.  Climate variability and ice-sheet dynamics during the last three glaciations , 2014 .

[4]  Martin Frank,et al.  RADIOGENIC ISOTOPES: TRACERS OF PAST OCEAN CIRCULATION AND EROSIONAL INPUT , 2002 .

[5]  Heiko Pälike,et al.  The Heartbeat of the Oligocene Climate System , 2006, Science.

[6]  E. Sarachik,et al.  Thermohaline Oscillations Induced by Strong Steady Salinity Forcing of Ocean General Circulation Models , 1993 .

[7]  Hisashi Nakamura,et al.  The Pacific Decadal Oscillation, Revisited , 2016 .

[8]  J. Duplessy,et al.  Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events , 1997 .

[9]  M. Crucifix,et al.  ESD Ideas: The Peclet number is a centerstone of the orbital and millennial Pleistocene variability , 2020 .

[10]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[11]  H. Dijkstra,et al.  Effects of strongly eddying oceans on multidecadal climate variability in the Community Earth System Model , 2020, Ocean Science.

[12]  Shaun Lovejoy,et al.  The Weather and Climate: Emergent Laws and Multifractal Cascades , 2013 .

[13]  Nicolas Bellouin,et al.  Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. , 2012, Nature.

[14]  R. DeConto,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[15]  Bernd Kromer,et al.  Persistent Solar Influence on North Atlantic Climate During the Holocene , 2001, Science.

[16]  M. Hughes,et al.  Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.

[17]  P. Ditlevsen,et al.  The Recurrence Time of Dansgaard–Oeschger Events and Limits on the Possible Periodic Component , 2005 .

[18]  D. Schrag,et al.  A New Mechanism for Dansgaard-Oeschger Cycles , 2013 .

[19]  S. Mallat A wavelet tour of signal processing , 1998 .

[20]  P. Ditlevsen,et al.  Tipping points: Early warning and wishful thinking , 2010 .

[21]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Appy Sluijs,et al.  Orbital pacing of methane hydrate destabilization during the Palaeogene , 2011 .

[23]  H. Heinrich,et al.  Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years , 1988, Quaternary Research.

[24]  Michael Ghil,et al.  A mathematical theory of climate sensitivity or, How to deal with both anthropogenic forcing and natural variability? , 2015 .

[25]  M. Jarvis,et al.  High‐ and low‐frequency 11‐year solar cycle signatures in the Southern Hemispheric winter and spring , 2011 .

[26]  M. England,et al.  Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations , 2017 .

[27]  T. Lenton,et al.  Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model , 1997 .

[29]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[30]  M. Schulz On the 1470‐year pacing of Dansgaard‐Oeschger warm events , 2002 .

[31]  Andrew J. Majda,et al.  A priori tests of a stochastic mode reduction strategy , 2002 .

[32]  C. Ritz,et al.  Links between ocean temperature and iceberg discharge during Heinrich events , 2010 .

[33]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[34]  Grebogi,et al.  Multifractal properties of snapshot attractors of random maps. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[35]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down Coupled Model , 1997 .

[36]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[37]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[38]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[39]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[40]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[41]  Michael Sarnthein,et al.  Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60-18 kyr , 2000 .

[42]  R. Müller,et al.  Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities , 2018, Science Advances.

[43]  W. Moore,et al.  Climate‐tectonic coupling: Variations in the mean, variations about the mean, and variations in mode , 2016 .

[44]  P. R. Julian,et al.  Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period , 1972 .

[45]  Richard E. Ernst,et al.  Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution , 2013 .

[46]  Thomas Y. Hou,et al.  Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..

[47]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Macayeal Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events , 1993 .

[49]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[50]  Michael E. Mann,et al.  Observed and Simulated Multidecadal Variability in the Northern Hemisphere , 1999 .

[51]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[52]  P. Ashwin,et al.  Chaotic and non-chaotic response to quasiperiodic forcing: limits to predictability of ice ages paced by Milankovitch forcing , 2018, 1804.08331.

[53]  Alexander Fischer,et al.  Distinct metastable atmospheric regimes despite nearly Gaussian statistics: a paradigm model. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. M. Young Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history , 2013 .

[55]  Shaun Lovejoy,et al.  Do GCMs predict the climate ... or macroweather , 2012 .

[56]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[57]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[58]  S. Vannitsem,et al.  The Structure of Climate Variability Across Scales , 2020, Reviews of Geophysics.

[59]  R. L. Edwards,et al.  A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China , 2001, Science.

[60]  Mátyás Herein,et al.  The snowball Earth transition in a climate model with drifting parameters: Splitting of the snapshot attractor. , 2019, Chaos.

[61]  M. Loutre,et al.  The Climate Response to the Astronomical Forcing , 2007 .

[62]  Michael Ghil,et al.  El Ni�o on the Devil's Staircase: Annual Subharmonic Steps to Chaos , 1994, Science.

[63]  Sebastian Wieczorek,et al.  Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study , 2011, Climate Dynamics.

[64]  L. Frankcombe,et al.  North atlantic multidecadal climate variability: An investigation of dominant time scales and processes , 2010 .

[65]  Y. Kushnir,et al.  Interdecadal Variations in North Atlantic Sea Surface Temperature and Associated Atmospheric Conditions , 1994 .

[66]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[67]  M. Al-Husseini,et al.  Orbital-forcing glacio-eustasy: A sequence-stratigraphic time scale , 2010, GeoArabia.

[68]  Byron A. Steinman,et al.  Absence of internal multidecadal and interdecadal oscillations in climate model simulations , 2020, Nature Communications.

[69]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[70]  Lorraine E. Lisiecki,et al.  Links between eccentricity forcing and the 100,000-year glacial cycle , 2010 .

[71]  E. Cook,et al.  Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies , 2000 .

[72]  David Archer,et al.  The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 , 2006 .

[73]  T. Delworth,et al.  Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model , 2012 .

[74]  L. Frankcombe,et al.  Noise induced multidecadal variability in the North Atlantic: excitation of normal modes , 2009 .

[75]  K. Condie Chapter 7 – The Supercontinent Cycle , 2016 .

[76]  A. Verdière,et al.  A Simple Model of Millennial Oscillations of the Thermohaline Circulation , 2007 .

[77]  Henrik Svensmark,et al.  Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods , 1996, Nature.

[78]  A minimum thermodynamic model for the bipolar seesaw , 2003 .

[79]  Mathieu Martinez,et al.  Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic , 2015, Proceedings of the National Academy of Sciences.

[80]  S. Wieczorek,et al.  Synchronisation vs. resonance: Isolated resonances in damped nonlinear oscillators , 2018, Physica D: Nonlinear Phenomena.

[81]  Michael E. Schlesinger,et al.  An oscillation in the global climate system of period 65–70 years , 1994, Nature.

[82]  F. Sévellec,et al.  On the mechanism of centennial thermohaline oscillations , 2006 .

[83]  M. Crucifix,et al.  A theory of Pleistocene glacial rhythmicity , 2018, Earth System Dynamics.

[84]  A. Prokoph,et al.  Evidence for periodicity and nonlinearity in a high-resolution fossil record of long-term evolution , 2000 .

[85]  P. Welander A simple heat-salt oscillator , 1982 .

[86]  Michael Ghil,et al.  Natural Climate Variability , 2002 .

[87]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[88]  G. Foster,et al.  Geochemical response of the mid-depth Northeast Atlantic Ocean to freshwater input during Heinrich events 1 to 4 , 2016 .

[89]  Tamás Bódai,et al.  Probabilistic Concepts in a Changing Climate: A Snapshot Attractor Picture , 2015 .

[90]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[91]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[92]  M. Cane,et al.  A Model El Niñ–Southern Oscillation , 1987 .

[93]  Karl Nyman,et al.  The middle Pleistocene transition by frequency locking and slow ramping of internal period , 2019, Climate Dynamics.

[94]  L. Polvani,et al.  Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation , 2019, Nature Geoscience.

[95]  Georg A. Gottwald,et al.  On spurious detection of linear response and misuse of the fluctuation–dissipation theorem in finite time series , 2016, 1601.03112.

[96]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[97]  Eli Tziperman,et al.  El Ni�o Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator , 1994, Science.

[98]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[99]  S. Rahmstorf,et al.  Observed fingerprint of a weakening Atlantic Ocean overturning circulation , 2017, Nature.

[100]  H. Dijkstra Nonlinear Climate Dynamics , 2013 .

[101]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[102]  L. Kump,et al.  Oceanic Euxinia in Earth History: Causes and Consequences , 2008 .

[103]  Adrian L. Melott,et al.  An ∼60-Million-Year Periodicity Is Common to Marine 87Sr/86Sr, Fossil Biodiversity, and Large-Scale Sedimentation: What Does the Periodicity Reflect? , 2012, The Journal of Geology.

[104]  E. Cortijo,et al.  Zooming in on Heinrich layers , 2001 .

[105]  M. Giorgetta,et al.  The role of stratosphere‐troposphere coupling in the occurrence of extreme winter cold spells over northern Europe , 2012 .

[106]  S. Flögel,et al.  Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw , 2019, Nature Geoscience.

[107]  T. Lenton,et al.  The Mid-Pleistocene Transition induced by delayed feedback and bistability , 2017, Dynamics and Statistics of the Climate System.

[108]  Paul D. Williams,et al.  Stochastic Parameterization: Towards a new view of Weather and Climate Models , 2015, 1510.08682.

[109]  T. Lenton,et al.  Timing of Neoproterozoic glaciations linked to transport-limited global weathering , 2011 .

[110]  Robert Lund,et al.  Changepoint Detection in Climate Time Series with Long-Term Trends , 2013 .

[111]  Stefan Rahmstorf,et al.  Timing of abrupt climate change: A precise clock , 2003 .

[112]  N. Graham,et al.  Continental-scale temperature variability during the past two millennia , 2013 .

[113]  J. M. Mitchell,et al.  An Overview of Climatic Variability and its Causal Mechanisms , 1976, Quaternary Research.

[114]  Zuoqiang Shi,et al.  Sparse time-frequency decomposition based on dictionary adaptation , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  M. Ghil,et al.  The physics of climate variability and climate change , 2019, 1910.00583.

[116]  M. Rypdal,et al.  Late Quaternary temperature variability described as abrupt transitions on a 1/ f noise background , 2015 .

[117]  Gregory J. Hakim,et al.  Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era , 2019, Nature Geoscience.

[118]  S. Poulton,et al.  Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling , 2019, Science.

[119]  Joanna D. Haigh The Impact of Solar Variability on Climate , 1996, Science.

[120]  Andrew T. Wittenberg,et al.  How Predictable is El Niño , 2003 .

[121]  D. Paillard The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle , 2017 .

[122]  Robert Lund,et al.  A Review and Comparison of Changepoint Detection Techniques for Climate Data , 2007 .

[123]  T. Sloan,et al.  Cosmic rays and climate change over the past 1000 million years , 2013, 1303.7314.

[124]  H. Dijkstra,et al.  The role of ocean gateways on cooling climate on long time scales , 2014 .

[125]  Barry Saltzman,et al.  A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification of CO2 dynamics , 1991, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[126]  J. Laskar,et al.  A ~ 9 myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: Is there a link? , 2012 .

[127]  H. Fredriksen,et al.  Long-Range Persistence in Global Surface Temperatures Explained by Linear Multibox Energy Balance Models , 2017, 1701.07355.

[128]  Barry Saltzman,et al.  Three basic problems of paleoclimatic modeling: a personal perspective and review , 1990 .

[129]  P. Ashwin,et al.  The middle Pleistocene transition as a generic bifurcation on a slow manifold , 2015, Climate Dynamics.

[130]  M. Crucifix,et al.  Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age models , 2019, Climate Dynamics.

[131]  J. Tison,et al.  One-to-one coupling of glacial climate variability in Greenland and Antarctica. , 2006 .

[132]  Christian L. E. Franzke,et al.  Bayesian analysis of rapid climate change during the last glacial using Greenland δ 18 O data , 2010 .

[133]  E. Rasmusson,et al.  Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño , 1982 .

[134]  B. Stevens,et al.  The Atlantic Multidecadal Oscillation without a role for ocean circulation , 2015, Science.

[135]  Didier Paillard,et al.  The timing of Pleistocene glaciations from a simple multiple-state climate model , 1998, Nature.

[136]  S. Solanki Harold Jeffreys Lecture: Solar variability and climate change: is there a link? , 2002 .

[137]  Peter John Huybers,et al.  Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression , 2007 .

[138]  Shaun A Marcott,et al.  A Reconstruction of Regional and Global Temperature for the Past 11,300 Years , 2013, Science.

[139]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[140]  P. Ashwin,et al.  Complex Climate Response to Astronomical Forcing: The Middle-Pleistocene Transition in Glacial Cycles and Changes in Frequency Locking , 2018, Front. Phys..

[141]  Wilford F. Weeks,et al.  On sea ice , 2010 .

[142]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[143]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[144]  P. Yiou,et al.  A 4500-year reconstruction of sea surface temperature variability at decadal time-scales off North Iceland , 2008 .

[145]  P. R. Julian,et al.  Observations of the 40-50-day tropical oscillation - a review , 1994 .

[146]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[147]  Stefan Rahmstorf,et al.  Rapid changes of glacial climate simulated in a coupled climate model , 2001, Nature.

[148]  J. Lodge Understanding climatic change, a program for action , 1977 .

[149]  A. Vernal,et al.  Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies – an introduction , 2013 .

[150]  Timothy M. Lenton,et al.  Periodic mid‐Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles , 2003 .

[151]  S. Lovejoy Spectra, intermittency, and extremes of weather, macroweather and climate , 2018, Scientific Reports.

[152]  G. Lohmann,et al.  A hemispheric mechanism for the atlantic multidecadal oscillation , 2007 .

[153]  Peter Huybers,et al.  Links between annual, Milankovitch and continuum temperature variability , 2005, Nature.

[154]  A. Majdaa,et al.  A priori tests of a stochastic mode reduction strategy , 2002 .

[155]  Michael Ghil,et al.  Stochastic climate dynamics: Random attractors and time-dependent invariant measures , 2011 .

[156]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[157]  M. Cane,et al.  The role of historical forcings in simulating the observed Atlantic multidecadal oscillation , 2016 .

[158]  W. Peltier,et al.  Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard‐Oeschger warming events , 2016 .

[159]  H. Dijkstra,et al.  A Southern Ocean mode of multidecadal variability , 2016 .

[160]  Manfred Mudelsee,et al.  Trend analysis of climate time series: A review of methods , 2019, Earth-Science Reviews.

[161]  M. Dubey,et al.  Ice‐core data evidence for a prominent near 20 year time‐scale of the Atlantic Multidecadal Oscillation , 2011 .

[162]  Dake Chen,et al.  Effects of westerly wind bursts on El Niño: A new perspective , 2014 .

[163]  A. Timmermann,et al.  El Niño–Southern Oscillation complexity , 2018, Nature.

[164]  D. E. Harrison,et al.  Scales of Variability in the Equatorial Pacific Inferred form Tropical Atmosphere-Ocean Buoy Array , 1996 .

[165]  Daniel J. Lunt,et al.  Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels , 2008, Nature.

[166]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[167]  H. Dijkstra,et al.  Modes of internal thermohaline variability in a single-hemispheric ocean basin , 2003 .

[168]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[169]  H. Goosse,et al.  Robust global ocean cooling trend for the pre-industrial Common Era , 2015 .

[170]  S. Hemming,et al.  Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint , 2004 .

[171]  Frank Lunkeit,et al.  Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models , 2002 .

[172]  Heidi Cullen,et al.  A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates , 1997 .

[173]  Sergey P. Kuznetsov,et al.  Strange Nonchaotic Attractors: Dynamics Between Order And Chaos in Quasiperiodically Forced Systems , 2006 .

[174]  J. Middelburg,et al.  The 405 kyr and 2.4 Myr eccentricity components in Cenozoic carbon isotope records , 2019, Climate of the Past.

[175]  Michel Crucifix,et al.  Oscillators and relaxation phenomena in Pleistocene climate theory , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[176]  N. Shackleton,et al.  Phase relationships between millennial‐scale events 64,000–24,000 years ago , 2000 .

[177]  J. Bjerknes,et al.  EL NIÑO AND THE SOUTHERN OSCILLATION , 2003 .

[178]  Jason Frank,et al.  Derivation of delay equation climate models using the Mori-Zwanzig formalism , 2019, Proceedings of the Royal Society A.

[179]  M. Crucifix,et al.  Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study , 2015, Climate Dynamics.

[180]  Maureen E. Raymo,et al.  The timing of major climate terminations , 1997 .

[181]  Henk A. Dijkstra,et al.  Multiple Oscillatory Modes of the Global Ocean Circulation , 2003 .

[182]  Georg A. Gottwald,et al.  Stochastic Climate Theory , 2016, 1612.07474.

[183]  T. Palmer,et al.  Sahel rainfall and worldwide sea temperatures, 1901–85 , 1986, Nature.

[184]  Hazime Mori,et al.  A New Expansion of the Master Equation , 1974 .

[185]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[186]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[187]  N. Mantua,et al.  The Pacific Decadal Oscillation , 2002 .

[188]  G. Feulner The faint young Sun problem , 2012, 1204.4449.

[189]  C. Wunsch,et al.  A Depth-Derived Pleistocene Age-Model: Uncertainty Estimates, Sedimentation Variability, and Nonlinear Climate Change , 2002 .

[190]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[191]  S. Lovejoy The Half-order Energy Balance Equation, Part 1: The homogeneous HEBE and long memories , 2020 .

[192]  Henry F. Diaz,et al.  El Niño and the Southern Oscillation , 2000 .

[193]  Shuanglin Li,et al.  Simulation by CMIP5 models of the atlantic multidecadal oscillation and its climate impacts , 2016, Advances in Atmospheric Sciences.

[194]  G. Lohmann,et al.  Abrupt glacial climate shifts controlled by ice sheet changes , 2014, Nature.