Non-polynomial closed string field theory: loops and conformal maps

[1]  M. Kaku Anomalies in non-polynomial closed string field theory , 1990 .

[2]  S. Samuel Solving the open bosonic string in perturbation theory , 1990 .

[3]  M. Kaku Deriving the four-string and open-closed string interactions from geometric string field theory , 1990 .

[4]  Guillermo R. Zemba,et al.  Tadpole graph in covariant closed string field theory , 1989 .

[5]  K. Suehiro,et al.  Non-polynomial closed string field theory , 1989 .

[6]  B. Zwiebach,et al.  Closed String Field Theory from Polyhedra , 1989 .

[7]  Kaku Geometric derivation of string field theory from first principles: Closed strings and modular invariance. , 1988, Physical review. D, Particles and fields.

[8]  Lykken,et al.  Modular-invariant closed-string field theory. , 1988, Physical review. D, Particles and fields.

[9]  M. Kaku Why are there two BRST string field theories , 1988 .

[10]  M. Kaku Introduction to superstrings , 1988 .

[11]  H. Verlinde,et al.  Chiral Bosonization, Determinants and the String Partition Function , 1987 .

[12]  Edward Witten,et al.  Non-commutative geometry and string field theory , 1986 .

[13]  E. C. Jones,et al.  Inelastic electron scattering at 180° from 14C , 1977 .

[14]  M. Kaku,et al.  Field theory of relativistic strings. II. Loops and Pomerons , 1974 .

[15]  M. Kaku,et al.  Field theory of relativistic strings. I. Trees , 1974 .

[16]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[17]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .