Cyberinfrastructure and High-Performance Computing

With the rapid advance in science, technology, and engineering development, high-resolution geospatial data have become increasingly available. One direct result is the increasing volume of the data. Processing big spatial data is both data- and computing-intensive. When the scale of geospatial data and computation is beyond the capacity of PC-based software and tools due to the limited storage, memory, and computing power, concurrency and parallelism over modern cyberinfrastructure are the future directions and challenges in geocomputation in response to the data-driven geography and geographic information science. This article will review the evolving cyberinfrastructure and summarize the major approaches to implementing high-performance geocomputation on the heterogeneous computer architecture and system.

[1]  Miaoqing Huang,et al.  GPGPU in GIS , 2017, Encyclopedia of GIS.

[2]  Deana D. Pennington,et al.  Transforming Scientists through Technical Education: A View from the Trenches , 2008, Computing in Science & Engineering.

[3]  Joan Antoni Sellarès,et al.  GPU-based computation of distance functions on road networks with applications , 2009, SAC '09.

[4]  Delbert Dueck,et al.  Affinity Propagation: Clustering Data by Passing Messages , 2009 .

[5]  Miaoqing Huang,et al.  Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms , 2013 .

[6]  Antonio J. Plaza,et al.  Real-Time Implementation of the Pixel Purity Index Algorithm for Endmember Identification on GPUs , 2014, IEEE Geoscience and Remote Sensing Letters.

[7]  Miaoqing Huang,et al.  MIC in GIS , 2017, Encyclopedia of GIS.

[8]  Damjan Strnad,et al.  Parallel terrain visibility calculation on the graphics processing unit , 2011, Concurr. Comput. Pract. Exp..

[9]  Antonio J. Plaza,et al.  Clusters Versus FPGA for Parallel Processing of Hyperspectral Imagery , 2008, Int. J. High Perform. Comput. Appl..

[10]  D. Gorgan,et al.  MedioGrid: A Grid-based Platform for Satellite Image Processing , 2007, 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications.

[11]  William J. Dally,et al.  The GPU Computing Era , 2010, IEEE Micro.

[12]  Rajat Raina,et al.  Large-scale deep unsupervised learning using graphics processors , 2009, ICML '09.

[13]  Jianting Zhang,et al.  Speeding up large-scale point-in-polygon test based spatial join on GPUs , 2012, BigSpatial '12.

[14]  Vaclav Skala,et al.  Interpolation and Intersection Algorithms and GPU , 2012, ICONS 2012.

[15]  Edzer Pebesma,et al.  Spatial interpolation in massively parallel computing environments , 2011 .

[16]  Liang Chen,et al.  Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data , 2015, Remote. Sens..

[17]  Tarek A. El-Ghazawi,et al.  The Promise of High-Performance Reconfigurable Computing , 2008, Computer.

[18]  Xinyue Ye,et al.  Patterns of Near-Repeat Gun Assaults in Houston , 2012 .

[19]  Yu Liu,et al.  Optimization for viewshed analysis on GPU , 2011, 2011 19th International Conference on Geoinformatics.

[20]  Le Gruenwald,et al.  Indexing large-scale raster geospatial data using massively parallel GPGPU computing , 2010, GIS '10.

[21]  K. Jacobsen CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING , 2012 .

[22]  Jianting Zhang,et al.  Constructing natural neighbor interpolation based grid DEM using CUDA , 2012, COM.Geo '12.

[23]  Chein-I Chang,et al.  GPU implementation of fully constrained linear spectral unmixing for remotely sensed hyperspectral data exploitation , 2010, Optical Engineering + Applications.

[24]  Antonio J. Plaza,et al.  Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing , 2013, Integr..

[25]  Didier El Baz,et al.  Recent Advances on GPU Computing in Operations Research , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[26]  Fabian Gieseke,et al.  Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs , 2014, ICML.

[27]  Haiyang Li,et al.  An Improved Image Segmentation Algorithm Based on GPU Parallel Computing , 2014, J. Softw..

[28]  Mohamed F. Tolba,et al.  Accelerated hyperspectral image recursive hierarchical segmentation using GPUs, multicore CPUs, and hybrid CPU/GPU cluster , 2014, Journal of Real-Time Image Processing.

[29]  Jon Atli Benediktsson,et al.  A new parallel tool for classification of remotely sensed imagery , 2012, Comput. Geosci..

[30]  Volodymyr Kindratenko,et al.  Modern Accelerator Technologies for Geographic Information Science , 2013 .

[31]  Antonio J. Plaza,et al.  Fast determination of the number of endmembers for real-time hyperspectral unmixing on GPUs , 2012, Journal of Real-Time Image Processing.

[32]  Jie Li,et al.  eScience in the cloud: A MODIS satellite data reprojection and reduction pipeline in the Windows Azure platform , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[33]  Le Gruenwald,et al.  Parallel quadtree coding of large-scale raster geospatial data on GPGPUs , 2011, GIS.

[34]  Antonio J. Plaza,et al.  Cluster versus GPU implementation of an Orthogonal Target Detection Algorithm for Remotely Sensed Hyperspectral Images , 2010, 2010 IEEE International Conference on Cluster Computing.

[35]  Miaoqing Huang,et al.  A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogeneous architectures , 2016, Int. J. Geogr. Inf. Sci..

[36]  Miaoqing Huang,et al.  Unsupervised image classification over supercomputers Kraken, Keeneland and Beacon , 2014 .

[37]  Wang Feng,et al.  A parallel algorithm for viewshed analysis in three-dimensional Digital Earth , 2015 .

[38]  Miaoqing Huang,et al.  Comparison of Parallel Programming Models on Intel MIC Computer Cluster , 2014, 2014 IEEE International Parallel & Distributed Processing Symposium Workshops.

[39]  Mathias Steinbach,et al.  Accelerating batch processing of spatial raster analysis using GPU , 2012, Comput. Geosci..

[40]  L. Geppert,et al.  The amazing vanishing transistor act , 2002 .

[41]  James Reinders,et al.  Intel Xeon Phi Coprocessor High Performance Programming , 2013 .

[42]  Scott Lathrop,et al.  Challenges and Opportunities in Preparing Students for Petascale Computational Science and Engineering , 2009, Computing in Science & Engineering.

[43]  Luigi Fusco,et al.  Grid technology for the storage and processing of remote sensing data: description of an application , 2003, SPIE Remote Sensing.

[44]  Francisco J. Jiménez-Hornero,et al.  Using general-purpose computing on graphics processing units (GPGPU) to accelerate the ordinary kriging algorithm , 2014, Comput. Geosci..

[45]  Kurt Keutzer,et al.  The Concurrency Challenge , 2008, IEEE Design & Test of Computers.

[46]  Miaoqing Huang,et al.  Geocomputation over the Emerging Heterogeneous Computing Infrastructure , 2014 .

[47]  Richard E. Klosterman,et al.  Comment on Drummond and French: Another View of the Future of GIS , 2008 .

[48]  Natalija Stojanovic,et al.  Performance improvement of viewshed analysis using GPU , 2013, 2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS).

[49]  Le Gruenwald,et al.  Data Parallel Quadtree Indexing and Spatial Query Processing of Complex Polygon Data on GPUs , 2014, ADMS@VLDB.

[50]  Ying Luo,et al.  Preliminary Study on Unsupervised Classification of Remotely Sensed Images on the Grid , 2004, International Conference on Computational Science.

[51]  Fu Wei,et al.  Parallel Continuous k-Nearest Neighbor Computing in Location Based Spatial Networks on GPUs , 2013, 2013 International Conference on Computational and Information Sciences.

[52]  Le Gruenwald,et al.  Parallel spatial query processing on GPUs using R-trees , 2013, BigSpatial '13.

[53]  Steven Tuecke,et al.  The Anatomy of the Grid , 2003 .

[54]  Abel Paz,et al.  GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis , 2010, Optical Engineering + Applications.

[55]  Daniel Atkins,et al.  Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure , 2003 .

[56]  Jianting Zhang,et al.  CudaGIS: report on the design and realization of a massive data parallel GIS on GPUs , 2012, IWGS '12.

[57]  Chenghu Zhou,et al.  A strategy for raster-based geocomputation under different parallel computing platforms , 2014, Int. J. Geogr. Inf. Sci..

[58]  Xuan Shi,et al.  Parallelizing ISODATA Algorithm for Unsupervised Image Classification on GPU , 2013 .

[59]  Salles V. G. Magalhães,et al.  An Improved Parallel Algorithm Using GPU for Siting Observers on Terrain , 2014, ICEIS.

[60]  Michael F. Goodchild,et al.  Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? , 2011, Int. J. Digit. Earth.

[61]  Martin D. F. Wong,et al.  Parallel implementation of R-trees on the GPU , 2012, 17th Asia and South Pacific Design Automation Conference.

[62]  Byoung-Woo Oh,et al.  A Parallel Access Method for Spatial Data Using GPU , 2012 .

[63]  Scott Lathrop,et al.  High-Performance Computing Education , 2008, Comput. Sci. Eng..

[64]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[65]  Yingjie Xia,et al.  Parallel Viewshed Analysis on GPU Using CUDA , 2010, 2010 Third International Joint Conference on Computational Science and Optimization.

[66]  Dongseop Kwon,et al.  Parallel Range Query Processing on R-Tree with Graphics Processing Unit , 2011, 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing.

[67]  Bo Yuan,et al.  An efficient parallel ISODATA algorithm based on Kepler GPUs , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[68]  M. Goodchild,et al.  Data-driven geography , 2014, GeoJournal.

[69]  David Tarditi,et al.  Accelerator: using data parallelism to program GPUs for general-purpose uses , 2006, ASPLOS XII.

[70]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[71]  Antonio J. Plaza,et al.  Efficient Implementation of Hyperspectral Anomaly Detection Techniques on GPUs and Multicore Processors , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[72]  Andrew A. Chien,et al.  The future of microprocessors , 2011, Commun. ACM.

[73]  Xuan Shi,et al.  Kriging interpolation over heterogeneous computer architectures and systems , 2013 .

[74]  Antonio J. Plaza,et al.  Parallel Processing of Remotely Sensed Hyperspectral Images On Heterogeneous Networks of Workstations Using HeteroMPI , 2008, Int. J. High Perform. Comput. Appl..

[75]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[76]  Wen Zeng,et al.  pRPL 2.0: Improving the Parallel Raster Processing Library , 2014 .

[77]  George F. Rengert,et al.  Near-Repeat Patterns in Philadelphia Shootings , 2008 .

[78]  Herb Sutter,et al.  The Free Lunch Is Over A Fundamental Turn Toward Concurrency in Software , 2013 .

[79]  Mark McKenney,et al.  Geospatial overlay computation on the GPU , 2011, GIS.

[80]  Imtiaz Ahmad,et al.  D-ISODATA: A Distributed Algorithm for Unsupervised Classification of Remotely Sensed Data on Network of Workstations , 1999, J. Parallel Distributed Comput..

[81]  David Blythe,et al.  Rise of the Graphics Processor , 2008, Proceedings of the IEEE.

[82]  Shaowen Wang,et al.  Spherical interpolation over graphic processing units , 2011, HPDGIS '11.

[83]  Antonio J. Plaza,et al.  Parallel Hyperspectral Unmixing on GPUs , 2014, IEEE Geoscience and Remote Sensing Letters.

[84]  Tangpei Cheng,et al.  Accelerating universal Kriging interpolation algorithm using CUDA-enabled GPU , 2013, Comput. Geosci..

[85]  Antonio J. Plaza,et al.  Unmixing-based content retrieval system for remotely sensed hyperspectral imagery on GPUs , 2014, The Journal of Supercomputing.

[86]  Chen Zhuo,et al.  Parallel algorithm for viewshed analysis on a modern GPU , 2011 .

[87]  Antonio Plaza,et al.  GPU implementation of the pixel purity index algorithm for hyperspectral image analysis , 2010, 2010 IEEE International Conference On Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS).

[88]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[89]  James R. Larus,et al.  Software and the Concurrency Revolution , 2005, ACM Queue.

[90]  Wenwu Tang,et al.  Accelerating Agent-Based Modeling Using Graphics Processing Units , 2013 .

[91]  Jianting Zhang,et al.  High-Performance Zonal Histogramming on Large-Scale Geospatial Rasters Using GPUs and GPU-Accelerated Clusters , 2014, 2014 IEEE International Parallel & Distributed Processing Symposium Workshops.

[92]  Jianting Zhang Speeding up large-scale geospatial polygon rasterization on GPGPUs , 2011, HPDGIS '11.

[93]  Steven P. French,et al.  The Future of GIS in Planning: Converging Technologies and Diverging Interests , 2008 .

[94]  X. Zhang,et al.  A Grid Environment Based Satellite Images Processing , 2009, 2009 First International Conference on Information Science and Engineering.

[95]  Xuejun Yang,et al.  Services for Parallel Remote-Sensing Image Processing Based on Computational Grid , 2004, GCC Workshops.