The SAT-UNSAT transition for random constraint satisfaction problems

We study threshold phenomena for a large class of random constraint satisfaction problems over finite domains. Our main contribution is a complete classification of the nature (sharp or coarse) of the SAT-UNSAT transition for random Boolean CSPs, which is based on easily decidable properties.

[1]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[2]  Nadia Creignou,et al.  Coarse and Sharp Transitions for Random Generalized Satisfyability Problems , 2004 .

[3]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[4]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[5]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[6]  Nadia Creignou,et al.  Combinatorial sharpness criterion and phase transition classification for random CSPs , 2004, Inf. Comput..

[7]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[8]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[9]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[10]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[11]  Abraham D. Flaxman A sharp threshold for a random constraint satisfaction problem , 2004, Discret. Math..

[12]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[13]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[14]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[15]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[16]  Ehud Friedgut,et al.  Hunting for sharp thresholds , 2005, Random Struct. Algorithms.

[17]  Nadia Creignou,et al.  Generalized satisfiability problems: minimal elements and phase transitions , 2003, Theor. Comput. Sci..

[18]  Ehud Friedgut,et al.  A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.

[19]  Michael Molloy,et al.  Models for Random Constraint Satisfaction Problems , 2003, SIAM J. Comput..

[20]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[21]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[22]  Toby Walsh The interface between P and NP: COL, XOR, NAE, 1-in-k, and Horn SAT , 2002, AAAI/IAAI.

[23]  Nadia Creignou,et al.  A sharp threshold for the renameable-Horn and the q-Horn properties , 2005, Discret. Appl. Math..

[24]  Tomasz Łuczak,et al.  The phase transition in a random hypergraph , 2002 .

[25]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction a More Accurate Picture , 2022 .

[26]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..