A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines

The fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties. Advanced biofuels from second- and third-generation feedstocks can result in significantly reduced life-cycle greenhouse-gas emissions, compared to traditional fossil fuels or first-generation biofuels from food-based feedstocks. These advanced biofuels include alcohols, biodiesel, or synthetic hydrocarbons obtained either from hydrotreatment of oxygenated biofuels or from Fischer–Tropsch synthesis. The engine performance and exhaust pollutant emissions of advanced biofuels are linked to their fundamental combustion properties, which can be modeled using combustion chemical-kinetic mechanisms and surrogate fuel blends. In general, first-generation or advanced biofuels perform well in existing combustion engines, either as blend additives with petro-fuels or as pure “drop-in” replacements. Generally, oxygenated biofuels produce lower intrinsic nitric-oxide and soot emissions than hydrocarbon fuels in fundamental experiments, but engine-test results can be complicated by multiple factors. In order to reduce engine emissions and improve fuel efficiency, several novel technologies, including engines and fuel cells, are being developed. The future fuel requirements for a selection of such novel power-generation technologies, along with their potential performance improvements over existing technologies, are discussed. The trend in the biofuels and transportation industries appears to be moving towards drop-in fuels that require little changes in vehicle or fueling infrastructure, but this comes at a cost of reduced life-cycle efficiencies for the overall alternative-fuel production and utilization system. In the future, fuel-flexible, high-efficiency, and ultra-low-emissions heat-engine and fuel-cell technologies promise to enable consumers to switch to the lowest-cost and cleanest fuel available in their market at any given time. This would also enable society as a whole to maximize its global level of transportation activity, while maintaining urban air quality, within an energy- and carbon-constrained world.

[1]  William J. Pitz,et al.  Detailed chemical kinetic reaction mechanisms for primary reference fuels for diesel cetane number and spark-ignition octane number , 2011 .

[2]  Hukam Chand Mongia,et al.  TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions , 2003 .

[3]  M. Musculus,et al.  Conceptual models for partially premixed low-temperature diesel combustion , 2013 .

[4]  John E. Dec,et al.  An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging , 2006 .

[5]  J. Bergthorson,et al.  Skeletal Chemical Kinetic Mechanisms for Syngas, Methyl Butanoate, n‑Heptane, and n‑Decane , 2013 .

[6]  William J. Pitz,et al.  Experimental and modeling study of fuel interactions with an alkyl nitrate cetane enhancer, 2-ethyl-hexyl nitrate , 2015 .

[7]  Kwang Myung Cho,et al.  Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. , 2011, Journal of the American Chemical Society.

[8]  René Kleijn,et al.  Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2). , 2014, Environmental science & technology.

[9]  Andrew McIlroy,et al.  Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels , 2006 .

[10]  Ajay K. Dalai,et al.  Bio-oil valorization: A review , 2013 .

[11]  M. Romero,et al.  Concentrating solar thermal power and thermochemical fuels , 2012 .

[12]  F. Halter,et al.  Experimental determination of laminar burning velocity for butanol/iso-octane and ethanol/iso-octane blends for different initial pressures , 2013 .

[13]  Ronald K. Hanson,et al.  Ignition delay times of conventional and alternative fuels behind reflected shock waves , 2015 .

[14]  Robert J. Kee,et al.  Chemical Kinetics and Combustion Modeling , 1990 .

[15]  Lauro André Ribeiro,et al.  Surveying techno-economic indicators of microalgae biofuel technologies , 2013 .

[16]  R. L. Evans Automotive Engine Alternatives , 1987 .

[17]  T. Sowlati,et al.  Value chain optimization of forest biomass for bioenergy production: A review , 2013 .

[18]  C. McEnally,et al.  Sooting tendencies of oxygenated hydrocarbons in laboratory-scale flames. , 2011, Environmental science & technology.

[19]  Zuo-hua Huang,et al.  Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures , 2013 .

[20]  J. Lighty,et al.  Sooting behaviors of n-butanol and n-dodecane blends , 2014 .

[21]  R. Reitz,et al.  Validation of engine combustion models against detailed in-cylinder optical diagnostics data for a heavy-duty compression-ignition engine , 2007 .

[22]  S. C. Hill,et al.  Modeling of nitrogen oxides formation and destruction in combustion systems , 2000 .

[23]  S. Richard,et al.  LES prediction and analysis of knocking combustion in a spark ignition engine , 2015 .

[24]  Zuo-hua Huang,et al.  Laminar Flame Speeds and Flame Instabilities of Pentanol Isomer–Air Mixtures at Elevated Temperatures and Pressures , 2013 .

[25]  V. Katinas,et al.  Trends and sustainability criteria of the production and use of liquid biofuels , 2010 .

[26]  Dimitrios C. Rakopoulos,et al.  Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends , 2012 .

[27]  Heinz Pitsch,et al.  Large eddy simulation of soot evolution in an aircraft combustor , 2013 .

[28]  T. Butcher,et al.  Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems , 2003 .

[29]  J. Ellzey,et al.  Experimental and numerical conversion of liquid heptane to syngas through combustion in porous media , 2008 .

[30]  Fabio Menten,et al.  A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis , 2013 .

[31]  X. Verykios,et al.  Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.

[32]  A. Faaij,et al.  A bottom-up assessment and review of global bio-energy potentials to 2050 , 2007 .

[33]  H. Curran,et al.  A Shock Tube Study of n- and iso-Propanol Ignition , 2009 .

[34]  F. Egolfopoulos,et al.  Sensitivity of propagation and extinction of large hydrocarbon flames to fuel diffusion , 2009 .

[35]  Iddrisu Awudu,et al.  Uncertainties and sustainability concepts in biofuel supply chain management: A review , 2012 .

[36]  José Rodríguez-Fernández,et al.  Combustion characteristics and emissions of FischerTropsch diesel fuels in IC engines , 2011 .

[37]  R. Barlow,et al.  The structure of premixed and stratified low turbulence flames , 2011 .

[38]  D. Carder,et al.  Emissions characteristics of higher alcohol/gasoline blends , 2000 .

[39]  Anoop Singh,et al.  Production of liquid biofuels from renewable resources , 2011 .

[40]  Octavio Armas,et al.  Effect of biodiesel fuels on diesel engine emissions , 2008 .

[41]  David L. Harrington,et al.  Automotive Spark-Ignited Direct-Injection Gasoline Engines , 2000 .

[42]  The Feasibility of Using Raw Liquids from Fast Pyrolysis of Woody Biomass as Fuels for Compression-Ignition Engines: A Literature Review , 2013 .

[43]  Vimal Chandra Pandey,et al.  Jatropha curcas: A potential biofuel plant for sustainable environmental development , 2012 .

[44]  Gao Min,et al.  On thermoelectric power conversion from heat recirculating combustion systems , 2002 .

[45]  Jens R. Rostrup-Nielsen,et al.  Conversion of hydrocarbons and alcohols for fuel cells , 2002 .

[46]  Rudolph Diesel,et al.  THE DIESEL OIL ENGINE. , 1912 .

[47]  T. Carlson,et al.  Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks , 2009 .

[48]  Roger Westerholm,et al.  State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs , 2001 .

[49]  P. Versailles,et al.  Increased Flame Reactivity of a Lean Premixed Flame Through the Use of a Custom-Built High-Voltage Pulsed Plasma Source , 2014, IEEE Transactions on Plasma Science.

[50]  Janet L. Ellzey,et al.  Superadiabatic Combustion in Conducting Tubes and Heat Exchangers of Finite Length , 2007 .

[51]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .

[52]  William J. Pitz,et al.  Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels , 2013 .

[53]  F. Weinberg,et al.  A burner for mixtures of very low heat content , 1974, Nature.

[54]  Amanda Ramcharan,et al.  Relative Reactivities of the Isomeric Butanols and Ethanol in an Ignition Quality Tester , 2011 .

[55]  Seokhwan Lee,et al.  Performance and Emission Characteristics of a Diesel Engine Fueled with Pyrolysis Oil-Ethanol Blend with Diesel and Biodiesel Pilot Injection , 2013 .

[56]  Thomas A. Litzinger,et al.  A jet fuel surrogate formulated by real fuel properties , 2010 .

[57]  John E. Dec,et al.  Advanced compression-ignition engines—understanding the in-cylinder processes , 2009 .

[58]  F. Dryer,et al.  Reduced kinetic models for the combustion of jet propulsion fuels , 2013 .

[59]  János M. Beér,et al.  Combustion technology developments in power generation in response to environmental challenges , 2000 .

[60]  J. Wunning,et al.  Flameless oxidation to reduce thermal no-formation , 1997 .

[61]  C. Myung,et al.  Exhaust nanoparticle emissions from internal combustion engines: A review , 2011 .

[62]  Tim Lieuwen,et al.  Modeling Premixed Combustion-Acoustic Wave Interactions: A Review , 2003 .

[63]  K. Varatharajan,et al.  Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review , 2012 .

[64]  A. Bridgwater,et al.  Overview of Applications of Biomass Fast Pyrolysis Oil , 2004 .

[65]  Alex C. Alkidas,et al.  Combustion advancements in gasoline engines , 2007 .

[66]  C. Westbrook,et al.  On the combustion chemistry of n-heptane and n-butanol blends. , 2012, The journal of physical chemistry. A.

[67]  Mingfa Yao,et al.  Progress and recent trends in homogeneous charge compression ignition (HCCI) engines , 2009 .

[68]  P. Massoli,et al.  Running Light-Duty DI Diesel Engines with Wood Pyrolysis Oil , 2000 .

[69]  M. G. Sobacchi Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels , 2002 .

[70]  E. Ranzi,et al.  Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass‐Derived Transportation Fuels , 2014 .

[71]  K. Ptasinski Thermodynamic efficiency of biomass gasification and biofuels conversion , 2008 .

[72]  C. Law,et al.  Flame speed and self-similar propagation of expanding turbulent premixed flames. , 2012, Physical review letters.

[73]  J. Zádor,et al.  Kinetics of elementary reactions in low-temperature autoignition chemistry , 2011 .

[74]  Xiaoyan Dai,et al.  CH4–CO2 reforming by plasma – challenges and opportunities , 2011 .

[75]  F. Williams,et al.  Formation of NOx, CH4, and C2 species in laminar methanol flames , 1998 .

[76]  Lee R. Lynd,et al.  Overview and evaluation of fuel ethanol from cellulosic biomass , 1996 .

[77]  A. Konnov,et al.  Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures , 2011 .

[78]  Theodoros Damartzis,et al.  Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review , 2011 .

[79]  Flame propagation of mixtures of air with high molecular weight neat hydrocarbons and practical jet and diesel fuels , 2013 .

[80]  Riitta L. Keiski,et al.  Challenges in biobutanol production: How to improve the efficiency? , 2011 .

[81]  Larry Williams,et al.  Camelina‐derived jet fuel and diesel: Sustainable advanced biofuels , 2010 .

[82]  Marie-Noëlle Pons,et al.  Biodiesel via supercritical ethanolysis within a global analysis "feedstocks-conversion-engine" for a sustainable fuel alternative. , 2014 .

[83]  Daniel I. Pineda,et al.  Conversion of jet fuel and butanol to syngas by filtration combustion , 2013 .

[84]  Piero Baglioni,et al.  Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines - Part 2: tests in diesel engines , 2003 .

[85]  Donald L. Smith,et al.  Biodiesel – An Integrated Approach for a Highly Efficient Biofuel , 2011 .

[86]  S. Vaughn,et al.  Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. , 2010, Bioresource technology.

[87]  Subir Roychoudhury,et al.  From jet fuel to electric power using a mesoscale, efficient Stirling cycle , 2007 .

[88]  Liandong Zhu,et al.  Microalgal biofuels: Flexible bioenergies for sustainable development , 2014 .

[89]  Hong Wang,et al.  Biomass resources and their bioenergy potential estimation: A review , 2013 .

[90]  Ayhan Demirbas,et al.  Progress and recent trends in biofuels , 2007 .

[91]  Charles J. Mueller,et al.  Recent progress in the development of diesel surrogate fuels , 2009 .

[92]  J. Bergthorson,et al.  Structure-reactivity trends of C1–C4 alkanoic acid methyl esters , 2011 .

[93]  K. A. Subramanian,et al.  Alternative fuels for transportation vehicles: A technical review , 2013 .

[94]  Lilian L. N. Guarieiro,et al.  The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review , 2007 .

[95]  John L. Graham,et al.  Swelling of Nitrile Rubber by Selected Aromatics Blended in a Synthetic Jet Fuel , 2006 .

[96]  Eric D. Larson,et al.  A review of life-cycle analysis studies on liquid biofuel systems for the transport sector , 2006 .

[97]  Tamás Turányi,et al.  Uncertainty analysis of NO production during methane combustion , 2008 .

[98]  Charles K. Westbrook,et al.  Chemical kinetics of hydrocarbon ignition in practical combustion systems , 2000 .

[99]  Tim Edwards,et al.  Experimental studies on the combustion characteristics of alternative jet fuels , 2012 .

[100]  S. Starikovskaia Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms , 2014 .

[101]  R. Dunn Effects of minor constituents on cold flow properties and performance of biodiesel , 2009 .

[102]  Haji Hassan Masjuki,et al.  Impacts of biodiesel combustion on NOx emissions and their reduction approaches , 2013 .

[103]  Robert F. Richards,et al.  Demonstration of an external combustion micro-heat engine , 2007 .

[104]  C. O. Paschereit,et al.  Control of combustion dynamics in a swirl-stabilized combustor with nanosecond repetitively pulsed discharges , 2013 .

[105]  F. Egolfopoulos,et al.  Extinction Studies of Flames of Heavy Neat Hydrocarbons and Practical Fuels , 2013 .

[106]  Lisa Graham,et al.  Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85 , 2008 .

[107]  M. Koffas Expanding the repertoire of biofuel alternatives through metabolic pathway evolution , 2009, Proceedings of the National Academy of Sciences.

[108]  H. Pitsch,et al.  Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors , 2009 .

[109]  C. Westbrook,et al.  A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane , 2009 .

[110]  Heinz Pitsch,et al.  Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels , 2007 .

[111]  M. Thomson,et al.  Experimental and Kinetic Modeling Study of 1-Hexanol Combustion in an Opposed-Flow Diffusion Flame , 2013 .

[113]  C. Largeau,et al.  Botryococcus braunii: a rich source for hydrocarbons and related ether lipids , 2005, Applied Microbiology and Biotechnology.

[114]  D. M. Alonso,et al.  Catalytic conversion of biomass to biofuels , 2010 .

[115]  Daniel Valco,et al.  Ignition behavior and surrogate modeling of JP-8 and of camelina and tallow hydrotreated renewable jet fuels at low temperatures , 2013 .

[116]  C. Togbé,et al.  Experimental and kinetic modeling study of trans-methyl-3-hexenoate oxidation in JSR and the role of CC double bond , 2014 .

[117]  Nicolas Jeuland,et al.  A linear-by-mole blending rule for octane numbers of n-heptane/iso-octane/toluene mixtures , 2014 .

[118]  A. Kuthi,et al.  Nanosecond Plasma Ignition for Improved Performance of an Internal Combustion Engine , 2007, IEEE Transactions on Plasma Science.

[119]  S. M. Sarathy,et al.  An experimental and modeling study of n-octanol combustion , 2015 .

[120]  J. W. Fleming,et al.  Investigation of NCN and prompt-NO formation in low-pressure C1–C4 alkane flames , 2012 .

[121]  R. H. Borgwardt,et al.  Transportation fuel from cellulosic biomass: a comparative assessment of ethanol and methanol options , 1999 .

[122]  Marcos Chaos,et al.  A high-temperature chemical kinetic model for primary reference fuels , 2007 .

[123]  T. Tsotsis,et al.  Soot formation in flames of model biodiesel fuels , 2012 .

[124]  J. Bergthorson,et al.  Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions , 2013 .

[125]  M. K. Abdullah,et al.  A review of investigations on liquid fuel combustion in porous inert media , 2009 .

[126]  Jürgen Warnatz,et al.  Chemistry of high temperature combustion of alkanes up to octane , 1985 .

[127]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[128]  Piero Baglioni,et al.  Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1 : emulsion production , 2003 .

[129]  Robert J. Kee,et al.  Solid-oxide fuel cells with hydrocarbon fuels , 2005 .

[130]  Zuo-hua Huang,et al.  High temperature ignition delay times of C5 primary alcohols , 2013 .

[131]  B. Veyssière,et al.  Potential direct use of solid biomass in internal combustion engines , 2013 .

[132]  F. Dryer,et al.  A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels , 2012 .

[133]  J. Liao,et al.  Pentanol isomer synthesis in engineered microorganisms , 2009, Applied Microbiology and Biotechnology.

[134]  Geoffrey P. Hammond,et al.  Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review , 2012 .

[135]  P. Versailles,et al.  Quantitative CH measurements in atmospheric-pressure, premixed flames of C1–C4 alkanes , 2016 .

[136]  Sanjay M. Correa,et al.  Power generation and aeropropulsion gas turbines: From combustion science to combustion technology , 1998 .

[137]  M. Mascal,et al.  Direct, high-yield conversion of cellulose into biofuel. , 2008, Angewandte Chemie.

[138]  C. Avedisian,et al.  n-Butanol droplet combustion: Numerical modeling and reduced gravity experiments , 2015 .

[139]  L Caprino,et al.  Potential health effects of gasoline and its constituents: A review of current literature (1990-1997) on toxicological data. , 1998, Environmental health perspectives.

[140]  Thomas A. Litzinger,et al.  Emulating the Combustion Behavior of Real Jet Aviation Fuels by Surrogate Mixtures of Hydrocarbon Fluid Blends: Implications for Science and Engineering , 2014 .

[141]  J. Bergthorson,et al.  Tailoring Ethanol High Temperature Ignition by Means of Chemical Additives and Water Content , 2010 .

[142]  Philippe A. Bonnefoy,et al.  The carbon dioxide challenge facing aviation , 2013 .

[143]  Tony E Grift,et al.  ffect of biodiesel on engine performances and emissions , 2010 .

[144]  Chung King Law,et al.  Fuel Options for Next-Generation Chemical Propulsion , 2012 .

[145]  Thomas A. Litzinger,et al.  The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena , 2012 .

[146]  D. Lacoste,et al.  Dynamic response of a weakly turbulent lean-premixed flame to nanosecond repetitively pulsed discharges , 2013 .

[147]  S. Serbin,et al.  Improvement of the Gas Turbine Plasma Assisted Combustor Characteristics , 2011 .

[148]  A. M. Danilov Fuel Additives: Evolution and Use in 1996-2000 , 2001 .

[149]  Dimitrios Moshou,et al.  Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels , 2013 .

[150]  Michael J. Brear,et al.  The octane numbers of ethanol blended with gasoline and its surrogates , 2014 .

[151]  J. Dec A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging* , 1997 .

[152]  Adam R. Brandt,et al.  The climate impacts of bioenergy systems depend on market and regulatory policy contexts. , 2010, Environmental science & technology.

[153]  Bo Jiang,et al.  The role of low temperature fuel chemistry on turbulent flame propagation , 2014 .

[154]  P. Aleiferis,et al.  Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine , 2013 .

[155]  Robert A Dagle,et al.  Methanol steam reforming for hydrogen production. , 2007, Chemical reviews.

[156]  Keith Schofield,et al.  Large Scale Chemical Kinetic Models of Fossil Fuel Combustion: Adequate as Engineering Models—No More, No Less , 2012 .

[157]  S. M. Sarathy,et al.  Effects of fuel branching on the propagation of octane isomers flames , 2012 .

[158]  Jeremiah C. Lee,et al.  Design and fabrication of a meso-scale stirling engine and combustor. , 2005 .

[159]  C. Law,et al.  Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels , 2012 .

[160]  Zuo-hua Huang,et al.  Laminar Flame Characteristics of iso-Octane/n-Butanol Blend–Air Mixtures at Elevated Temperatures , 2013 .

[161]  Matthew A. Oehlschlaeger,et al.  Autoignition studies of conventional and Fischer–Tropsch jet fuels , 2012 .

[162]  Sara González-García,et al.  Comparative environmental performance of lignocellulosic ethanol from different feedstocks , 2010 .

[163]  P. Glaude,et al.  Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames , 2015 .

[164]  Amit Bhave,et al.  Mapping surrogate gasoline compositions into RON/MON space , 2010 .

[165]  T. Patzek Thermodynamics of the Corn-Ethanol Biofuel Cycle , 2004 .

[166]  Aamir Farooq,et al.  Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures , 2015 .

[167]  Bert Van de Beld,et al.  The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications , 2013 .

[168]  M. Oehlschlaeger,et al.  A shock tube study of methyl decanoate autoignition at elevated pressures , 2012 .

[169]  C. Westbrook,et al.  Chemical kinetic modeling of hydrocarbon combustion , 1984 .

[170]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[171]  Ronghuan He,et al.  Integration of high temperature PEM fuel cells with a methanol reformer , 2005 .

[172]  M. Oehlschlaeger,et al.  Comparative Study of the Autoignition of Methyl Decenoates, Unsaturated Biodiesel Fuel Surrogates , 2013 .

[173]  F. Williams,et al.  Numerical and experimental studies of ethanol flames , 2007 .

[174]  Gerhard Knothe,et al.  Biodiesel and renewable diesel: A comparison , 2010 .

[175]  Juhun Song,et al.  Biodiesel combustion, emissions and emission control , 2007 .

[176]  Felix Jiri Weinberg,et al.  Heat-Recirculating Burners: Principles and Some Recent Developments , 1996 .

[177]  Murray J. Thomson,et al.  Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol , 2012 .

[178]  D. Veynante,et al.  Stabilization of a Turbulent Premixed Flame Using a Nanosecond Repetitively Pulsed Plasma , 2006, IEEE Transactions on Plasma Science.

[179]  Thomas Sattelmayer,et al.  Flashback in a Swirl Burner With Cylindrical Premixing Zone , 2004 .

[180]  J. Bergthorson,et al.  Comparative Study of Methyl Butanoate and n-Heptane High Temperature Autoignition , 2010 .

[181]  Simon Blakey,et al.  Aviation gas turbine alternative fuels: A review , 2011 .

[182]  T. Litzinger A review of experimental studies of knock chemistry in engines , 1990 .

[183]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[184]  Tianfeng Lu,et al.  An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion , 2011 .

[185]  S. Candel,et al.  A review of active control of combustion instabilities , 1993 .

[186]  Yiguang Ju,et al.  The combustion kinetics of a synthetic paraffinic jet aviation fuel and a fundamentally formulated, experimentally validated surrogate fuel , 2012 .

[187]  M. Dry High quality diesel via the Fischer–Tropsch process – a review , 2002 .

[188]  Hua Zhao,et al.  Combustion and emission characteristics of a n-butanol HCCI engine , 2014 .

[189]  E. Oran,et al.  Chemical-Acoustic Interactions in Combustion Systems. , 1985 .

[190]  Performance and emission characteristics of a diesel engine operated with wood pyrolysis oil , 2014 .

[191]  F. Ahmed,et al.  Toxicology and human health effects following exposure to oxygenated or reformulated gasoline. , 2001, Toxicology letters.

[192]  P D Ronney,et al.  Throttleless Premixed-Charge Engines: Concept and Experiment , 1994 .

[193]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[194]  Chao Jin,et al.  Progress in the production and application of n-butanol as a biofuel , 2011 .

[195]  Pierre-Alexandre Glaude,et al.  A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. , 2013, Proceedings of the Combustion Institute. International Symposium on Combustion.

[196]  John R. Howell,et al.  Combustion of hydrocarbon fuels within porous inert media , 1996 .

[197]  Zhen Huang,et al.  Fuel design and management for the control of advanced compression-ignition combustion modes , 2011 .

[198]  J. Bergthorson,et al.  Comparative High Temperature Shock Tube Ignition of C1−C4 Primary Alcohols , 2010 .

[199]  Anja Oasmaa,et al.  Wood-pyrolysis oil as fuel in a diesel-power plant , 1993 .

[200]  Edwin Corporan,et al.  Certification of alternative aviation fuels and blend components , 2013 .

[201]  Andrew T. Harris,et al.  Porous burners for lean-burn applications , 2008 .

[202]  N. Marinov,et al.  A detailed chemical kinetic model for high temperature ethanol oxidation , 1999 .

[203]  Samveg Saxena,et al.  Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study , 2014 .

[204]  琚诒光 Recent progress and challenges in fundamental combustion research , 2014 .

[205]  R. Roy,et al.  Lipid profiling of developing Jatropha curcas L. seeds using (1)H NMR spectroscopy. , 2008, Bioresource technology.

[206]  H. Curran,et al.  A comparison of longer alkane and alcohol ignition including new experimental results for n-pentanol and n-hexanol , 2013 .

[207]  Chih-Jen Sung,et al.  Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures , 2013 .

[208]  Michael Taylor,et al.  An overview of second generation biofuel technologies. , 2010, Bioresource technology.

[209]  Mark A. Villela,et al.  Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends , 2014 .

[210]  Rosalam Sarbatly,et al.  Conversion of microalgae to biofuel , 2012 .

[211]  Thomas H. Bradley,et al.  Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles , 2009 .

[212]  Charles K. Westbrook,et al.  A comparative experimental and computational study of methanol, ethanol, and n-butanol flames , 2010 .

[213]  L. Carrette,et al.  Fuel cells: principles, types, fuels, and applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[214]  A. Alkidas Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions , 1999 .

[215]  P. Glaude,et al.  Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling – Advances and future refinements , 2013 .

[216]  D. Tree,et al.  Soot processes in compression ignition engines , 2007 .

[217]  Steven C. Ricke,et al.  Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. , 2012 .

[218]  Adrian O'Connell,et al.  Camelina oil as a fuel for diesel transport engines , 2003 .

[219]  John M. Simmie,et al.  Bio-butanol: Combustion properties and detailed chemical kinetic model , 2010 .

[220]  Kuang C. Lin,et al.  Biodiesel combustion: Advances in chemical kinetic modeling , 2011 .

[221]  S. M. Sarathy,et al.  Detailed Kinetic Modeling Study of n-Pentanol Oxidation , 2012 .

[222]  Tiziano Faravelli,et al.  Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar nonpremixed flows , 2007 .

[223]  James I. Hileman,et al.  Energy Content and Alternative Jet Fuel Viability , 2010 .

[224]  S. M. Sarathy,et al.  Alcohol combustion chemistry , 2014 .

[225]  Robert Mangoyana,et al.  A systems approach to evaluating sustainability of biofuel systems , 2013 .

[226]  P. Massoli,et al.  Diesel Engines Fueled by Wood Pyrolysis Oil: Feasibility and Perspectives , 2001 .

[227]  Anthony V. Bridgwater,et al.  Renewable fuels and chemicals by thermal processing of biomass , 2003 .

[228]  Heinz Pitsch,et al.  Ignition characteristics of a bio-derived class of saturated and unsaturated furans for engine applications , 2015 .

[229]  E. Rajasekar,et al.  Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels , 2010 .

[230]  J. Driscoll Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities , 2008 .

[231]  Mustafa Canakci,et al.  The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine , 2014 .

[232]  Changlie Wey,et al.  Effects of Bio-Derived Fuels on Emissions and Performance Using a 9-Point Lean Direct Injection Low Emissions Concept , 2013 .

[233]  Avinash Kumar Agarwal,et al.  Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines , 2007 .

[234]  Thierry Poinsot,et al.  A methodology based on reduced schemes to compute autoignition and propagation in internal combustion engines , 2015 .

[235]  F. Weinberg,et al.  Limits to energy release and utilisation from chemical fuels , 1975, Nature.

[236]  Albert E. Richey Mod II Automotive Stirling Engine Design Description and Performance Projections , 1986 .

[237]  Randall Gemmen,et al.  Issues for low-emission, fuel-flexible power systems , 2001 .

[238]  Alan Shihadeh,et al.  Diesel Engine Combustion of Biomass Pyrolysis Oils , 2000 .

[239]  Krishan K. Pandey,et al.  A review on harvesting, oil extraction and biofuels production technologies from microalgae , 2013 .

[240]  Marina Braun-Unkhoff,et al.  An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic Jet Fuels , 2012 .

[241]  C. Law,et al.  An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers , 2013 .

[242]  C. Westbrook,et al.  Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. , 2006, The journal of physical chemistry. A.

[243]  André L. Boehman,et al.  NOx emissions of alternative diesel fuels: A comparative analysis of biodiesel and FT diesel , 2005 .

[244]  Zuo-hua Huang,et al.  High-Temperature Ignition Delay Times and Kinetic Study of Furan , 2012 .

[245]  James A. Miller,et al.  Mechanism and modeling of nitrogen chemistry in combustion , 1989 .

[246]  Avinash Alagumalai,et al.  Internal combustion engines: Progress and prospects , 2014 .

[247]  Jeffrey M. Bergthorson,et al.  Comparison of Laminar Flame Speeds, Extinction Stretch Rates and Vapor Pressures of Jet A-1/HRJ Biojet Fuel Blends , 2014 .

[248]  Yiguang Ju,et al.  Comparative Evaluation of Global Combustion Properties of Alternative Jet Fuels , 2013 .

[249]  Thomas Sattelmayer,et al.  Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback , 2008 .

[250]  V. Menon,et al.  Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept , 2012 .

[251]  Electo Eduardo Silva Lora,et al.  Biofuels: Environment, technology and food security , 2009 .

[252]  Frederick L. Dryer,et al.  Application of blending rules for ignition quality metrics: A comment on “A linear-by-mole blending rule for octane numbers of n-heptane/iso-octane/toluene mixtures” , 2014 .

[253]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[254]  Y. Ju,et al.  Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames , 2010 .

[255]  C. Westbrook,et al.  Kinetic modeling of gasoline surrogate components and mixtures under engine conditions , 2011 .

[256]  C. Law,et al.  Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction , 2015 .

[257]  J. Griffiths,et al.  Thermokinetic interactions: Fundamentals of spontaneous ignition and cool flames , 1987 .

[258]  N. Aleksandrov,et al.  Plasma-assisted ignition and combustion , 2013 .

[259]  Robert L. McCormick,et al.  Combustion of fat and vegetable oil derived fuels in diesel engines , 1998 .

[260]  P. Glaude,et al.  PROGRESS IN DETAILED KINETIC MODELING OF THE COMBUSTION OF OXYGENATED COMPONENTS OF BIOFUELS. , 2012, Energy.

[261]  Tim Edwards,et al.  Advanced aviation fuels : a look ahead via a historical perspective , 2001 .

[262]  Wojciech M. Budzianowski,et al.  Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs , 2012 .

[263]  André Faaij,et al.  Greenhouse gas footprints of different biofuel production systems , 2010 .

[264]  T. Jacobs,et al.  Oxides of nitrogen emissions from biodiesel-fuelled diesel engines , 2010 .

[265]  S. Kent Hoekman,et al.  Review of the effects of biodiesel on NOx emissions , 2012 .

[266]  Douglas McGregor,et al.  Methyl tertiary-Butyl Ether: Studies for Potential Human Health Hazards , 2006, Critical reviews in toxicology.

[267]  A. Lefebvre Gas Turbine Combustion , 1983 .

[268]  S. M. Sarathy,et al.  On the High-Temperature Combustion of n-Butanol: Shock Tube Data and an Improved Kinetic Model , 2013 .

[269]  Christopher W. Wilson,et al.  The influence of alternative fuel composition on gas turbine ignition performance , 2012 .

[270]  M. Gundersen,et al.  A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition , 2009 .

[271]  Felix Jiri Weinberg,et al.  Burners Producing Large Excess Enthalpies , 1973 .

[272]  C. D. Rakopoulos,et al.  Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review , 2013 .

[273]  Samveg Saxena,et al.  Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits , 2013 .

[274]  Junyong Zhu,et al.  Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining , 2012 .

[275]  Pravat K. Swain,et al.  Biomass to liquid: A prospective challenge to research and development in 21st century , 2011 .

[276]  Matthew A. Oehlschlaeger,et al.  A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures , 2009 .

[277]  Marcos Chaos,et al.  Low and intermediate temperature oxidation of ethanol and ethanol–PRF blends: An experimental and modeling study , 2009 .

[278]  C. Law,et al.  Toward accommodating realistic fuel chemistry in large-scale computations , 2009 .

[279]  C. Bowman Kinetics of pollutant formation and destruction in combustion , 1975 .

[280]  Reinerus Benders,et al.  Comparison of renewable fuels based on their land use using energy densities , 2010 .

[281]  G. Gauthier,et al.  Burning rates and temperatures of flames in excess-enthalpy burners: A numerical study of flame propagation in small heat-recirculating tubes , 2014 .

[282]  Thaddeus Chukwuemeka Ezeji,et al.  Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology , 2008 .

[283]  Fabrice Foucher,et al.  Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb , 2010 .

[284]  K. Openshaw A review of Jatropha curcas: an oil plant of unfulfilled promise☆ , 2000 .

[285]  A. Brody,et al.  Epidemiology, toxicokinetics, and health effects of methyltert-butyl ether (MTBE) , 2008, Journal of Medical Toxicology.

[286]  Guangrui Liu,et al.  Technical review on jet fuel production , 2013 .

[287]  J. Bergthorson,et al.  Experimental and Modeling Study of Trends in the High-Temperature Ignition of Methyl and Ethyl Esters , 2011 .

[288]  Jeffrey M. Bergthorson,et al.  NO formation in model syngas and biogas blends , 2014 .

[289]  P. Glaude,et al.  Experimental and Modeling Study of Burning Velocities for Alkyl Aromatic Components Relevant to Diesel Fuels , 2015 .

[290]  A study of plasma-assisted ignition in a small internal combustion engine , 2012 .

[291]  Charles J. Mueller,et al.  An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel , 2009 .

[292]  E. Mastorakos Ignition of turbulent non-premixed flames , 2009 .

[293]  B. Renou,et al.  Pressure effects on laminar burning velocities and Markstein lengths for Isooctane–Ethanol–Air mixtures , 2013 .

[294]  Michael Foust,et al.  Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines , 2012 .

[295]  Roger A. Farrell Mod II Stirling Engine Overview , 1988 .

[296]  T. Korakianitis,et al.  Assessment of elliptic flame front propagation characteristics of iso-octane, gasoline, M85 and E85 in an optical engine , 2014 .

[297]  Hua Zhao,et al.  Combustion and emission characteristics of a HCCI engine fuelled with n-butanol–gasoline blends , 2013 .

[298]  D. Splitter,et al.  Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion , 2011 .

[299]  Thomas Sattelmayer,et al.  Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV , 2012 .

[300]  A. Konnov,et al.  Flame Studies of Oxygenates , 2013 .

[301]  Mazen A. Eldeeb,et al.  Reactivity Trends in Furan and Alkyl Furan Combustion , 2014 .

[302]  J. Bergthorson,et al.  An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components , 2013 .

[303]  Murray J. Thomson,et al.  Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane , 2014 .

[304]  M. Curran,et al.  A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective , 2007 .

[305]  Philippe Dagaut,et al.  The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling , 2006 .

[306]  Rashmi Chaubey,et al.  A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources , 2013 .

[307]  Gautam Kalghatgi,et al.  The outlook for fuels for internal combustion engines , 2014 .

[308]  S. Razzak,et al.  Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review , 2013 .

[309]  R. Reitz Directions in internal combustion engine research , 2013 .

[310]  M. Thomson,et al.  Comparison of the Spray Combustion Characteristics and Emissions of a Wood-Derived Fast Pyrolysis Liquid-Ethanol Blend with Number 2 and Number 4 Fuel Oils in a Pilot-Stabilized Swirl Burner , 2011 .

[311]  F. Battin‐Leclerc Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates , 2008 .

[312]  Prasant Kumar Rout,et al.  Production of first and second generation biofuels: A comprehensive review , 2010 .

[313]  Lester B. Lave,et al.  Evaluating automobile fuel/propulsion system technologies , 2003 .

[314]  Daniel Valco,et al.  Autoignition behavior of synthetic alternative jet fuels: An examination of chemical composition effects on ignition delays at low to intermediate temperatures , 2015 .

[315]  John B. Heywood Automotive engines and fuels: A review of future options , 1981 .

[316]  S. M. Sarathy,et al.  An experimental and kinetic modeling study of n-butanol combustion , 2009 .

[317]  Anthony J. Marchese,et al.  Autoignition Characterization of Primary Reference Fuels and n-Heptane/n-Butanol Mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine , 2013 .

[318]  Qin Zhang,et al.  Ethanol-diesel fuel blends -- a review. , 2005, Bioresource technology.

[319]  P. Glaude,et al.  An experimental and kinetic investigation of premixed furan/oxygen/argon flames. , 2011, Combustion and Flame.

[320]  Linda Shafer,et al.  Converting Algal Triglycerides to Diesel and HEFA Jet Fuel Fractions , 2013 .

[321]  Claus Felby,et al.  Agricultural residue production and potentials for energy and materials services , 2014 .

[322]  Felix Jiri Weinberg,et al.  The first half-million years of combustion research and today's burning problems , 1975 .

[323]  M. Bilal Khan,et al.  Progress in energy from microalgae: A review , 2013 .

[324]  C. O. Paschereit,et al.  Technical Notes Effect of Plasma Discharges on Nitric Oxide Emissions in a Premixed Flame , 2013 .

[325]  Stella Bezergianni,et al.  Comparison between different types of renewable diesel , 2013 .

[326]  Jeffrey T Moss,et al.  An experimental and kinetic modeling study of the oxidation of the four isomers of butanol. , 2008, The journal of physical chemistry. A.

[327]  Reinout Heijungs,et al.  LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice , 2012 .

[328]  Wojciech M. Budzianowski,et al.  Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors , 2012 .

[329]  Ger Devlin,et al.  A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading , 2011 .

[330]  Santosh J. Shanbhogue,et al.  Lean blowoff of bluff body stabilized flames: Scaling and dynamics , 2009 .

[331]  Murray J. Thomson,et al.  An Experimental Comparison of the Sooting Behavior of Synthetic Jet Fuels , 2011 .

[332]  J. Bergthorson,et al.  NOx formation and flame velocity profiles of iso- and n-isomers of butane and butanol , 2013 .

[333]  Mustafa Canakci,et al.  Impact of alcohol-gasoline fuel blends on the exhaust emission of an SI engine , 2013 .

[334]  Joël Blin,et al.  Use of bioethanol for biodiesel production , 2012 .

[335]  Vladimir A. Alekseev,et al.  Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene , 2013 .

[336]  Abul Kalam Hossain,et al.  Pyrolysis liquids and gases as alternative fuels in internal combustion engines: a review , 2013 .

[337]  Zhen Fang,et al.  Ultrasound-enhanced conversion of biomass to biofuels , 2014 .

[338]  P. R. Westmoreland,et al.  Biofuel combustion chemistry: from ethanol to biodiesel. , 2010, Angewandte Chemie.

[339]  T. Turányi,et al.  Mechanism Reduction to Skeletal Form and Species Lumping , 2013 .

[340]  Edwin Corporan,et al.  Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels , 2011 .

[341]  K. Maruta,et al.  Microscale combustion: Technology development and fundamental research , 2011 .

[342]  Tiziano Faravelli,et al.  Experimental formulation and kinetic model for JP-8 surrogate mixtures , 2002 .

[343]  Chunsheng Ji,et al.  Flame studies of conventional and alternative jet fuels and their surrogates , 2011 .

[344]  Amgad Elgowainy,et al.  Life-cycle analysis of bio-based aviation fuels. , 2013, Bioresource technology.

[345]  Yuriy Román‐Leshkov,et al.  Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates , 2007, Nature.

[346]  Jay D Keasling,et al.  Advanced biofuel production in microbes , 2010, Biotechnology journal.

[347]  Edward S. Blurock,et al.  Modeling Combustion with Detailed Kinetic Mechanisms , 2013 .

[348]  Zuo-hua Huang,et al.  Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol-air mixtures , 2013 .

[349]  M. Thomson,et al.  A study of the effects of the ester moiety on soot formation and species concentrations in a laminar coflow diffusion flame of a surrogate for B100 biodiesel , 2015 .

[350]  Tianfeng Lu,et al.  A comprehensive experimental and modeling study of iso-pentanol combustion , 2013 .

[351]  Haji Hassan Masjuki,et al.  Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production , 2013 .

[352]  Teuku Meurah Indra Mahlia,et al.  A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties , 2013 .

[353]  Fokion N. Egolfopoulos,et al.  Formation of nitrogen oxides in flames of model biodiesel fuels , 2012 .

[354]  S. Starikovskaia,et al.  Plasma assisted ignition and combustion , 2006 .

[355]  Suphi S. Oncel,et al.  Microalgae for a macroenergy world , 2013 .

[356]  Hukam Chand Mongia On Continuous NOx Reduction of Aero-propulsion Engines , 2010 .