Palmprint Classification Using Multiple Advanced Correlation Filters and Palm-Specific Segmentation

We propose a palmprint classification algorithm with the use of multiple correlation filters per class. Correlation filters are two-class classifiers that produce a sharp peak when filtering a sample of their class and a noisy output otherwise. For every class, we train the filters for a palm at different locations, where the palmprint region has a high degree of line content. With the use of a line detection procedure and a simple line energy measure, any region of the palm can be scored and the top-ranked regions are used to train the filters for each class. Using an enhanced palmprint segmentation algorithm, our proposed classifier achieves an average equal error rate of 1.12 times10-4% on a large database of 385 classes using multiple filters of size 64 times 64 pixels. The average false acceptance rate when the false rejection rate is zero is 2.25 times10-4%.

[1]  B. V. Vijaya Kumar,et al.  Minimum-variance synthetic discriminant functions , 1986 .

[2]  D. Casasent,et al.  Minimum average correlation energy filters. , 1987, Applied optics.

[3]  P. Réfrégier Filter design for optical pattern recognition: multicriteria optimization approach. , 1990, Optics letters.

[4]  B V Kumar,et al.  Tutorial survey of composite filter designs for optical correlators. , 1992, Applied optics.

[5]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Peter Kovesi,et al.  Symmetry and Asymmetry from Local Phase , 1997 .

[7]  David Zhang,et al.  Two novel characteristics in palmprint verification: datum point invariance and line feature matching , 1999, Pattern Recognit..

[8]  David Zhang,et al.  Automatic Palmprint Verification , 2001, Int. J. Image Graph..

[9]  B. V. K. Vijaya Kumar,et al.  Spatial frequency domain image processing for biometric recognition , 2002, Proceedings. International Conference on Image Processing.

[10]  Anil K. Jain,et al.  Matching of palmprints , 2002, Pattern Recognit. Lett..

[11]  David Zhang,et al.  Fisherpalms based palmprint recognition , 2003, Pattern Recognit. Lett..

[12]  B. V. K. Vijaya Kumar,et al.  Illumination Normalization Using Logarithm Transforms for Face Authentication , 2003, AVBPA.

[13]  Helen C. Shen,et al.  Personal Verification Using Palmprint and Hand Geometry Biometric , 2003, AVBPA.

[14]  David Zhang,et al.  Online Palmprint Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  David Zhang,et al.  Palmprint feature extraction using 2-D Gabor filters , 2003, Pattern Recognit..

[16]  David Zhang,et al.  Competitive coding scheme for palmprint verification , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[17]  David Zhang,et al.  Characterization of palmprints by wavelet signatures via directional context modeling , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[19]  B. V. K. Vijaya Kumar,et al.  "Corefaces" - robust shift invariant PCA based correlation filter for illumination tolerant face recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[20]  Marios Savvides,et al.  Eigenphases vs eigenfaces , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[21]  Abhijit Mahalanobis,et al.  Biometric verification with correlation filters. , 2004, Applied optics.

[22]  David Zhang,et al.  On hierarchical palmprint coding with multiple features for personal identification in large databases , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Pradeep K. Khosla,et al.  "Corefaces" - robust shift invariant PCA based correlation filter for illumination tolerant face recognition , 2004, CVPR 2004.

[24]  David Zhang,et al.  Feature-Level Fusion for Effective Palmprint Authentication , 2004, ICBA.

[25]  Marios Savvides,et al.  Reduced complexity face recognition using advanced correlation filters and fourier subspace methods for biometric applications , 2004 .

[26]  B.V.K. Vijaya Kumar,et al.  Palmprint recognition using correlation filter classifiers , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[27]  B. V. K. Vijaya Kumar,et al.  Verification of Biometric Palmprint Patterns Using Optimal Trade-Off Filter Classifiers , 2005, ICIAR.

[28]  Slobodan Ribaric,et al.  A biometric identification system based on eigenpalm and eigenfinger features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  B. V. K. Vijaya Kumar,et al.  Robust Iris Recognition Using Advanced Correlation Techniques , 2005, ICIAR.

[30]  B. V. K. Vijaya Kumar,et al.  Correlation Pattern Recognition , 2002 .

[31]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[32]  Bülent Sankur,et al.  Hand biometrics , 2006, Image Vis. Comput..

[33]  K. Venkataramani,et al.  Reduced Complexity Correlation Filters For Fingerprint Verification , 2006 .

[34]  David Zhang,et al.  Personal recognition using hand shape and texture , 2006, IEEE Transactions on Image Processing.