All‐Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution‐Phase Halide Passivation
暂无分享,去创建一个
Oleksandr Voznyy | Edward H. Sargent | Larissa Levina | Zhijun Ning | Sjoerd Hoogland | David Zhitomirsky | Xinzheng Lan | O. Voznyy | E. Sargent | S. Hoogland | L. Levina | P. Stadler | Zhijun Ning | D. Zhitomirsky | Xinzheng Lan | Yuan Ren | Yuan Ren | Philipp Stadler
[1] Prashant V Kamat,et al. Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.
[2] J. Luther,et al. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.
[3] Jiang Tang,et al. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.
[4] Feng Liu,et al. Metastable Phase in Undercooled Fe-Co Alloy , 2011 .
[5] Zeger Hens,et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.
[6] M. Kovalenko,et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.
[7] A Paul Alivisatos,et al. Photovoltaic performance of ultrasmall PbSe quantum dots. , 2011, ACS nano.
[8] Gregory D. Scholes,et al. Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .
[9] Isabella Concina,et al. Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes , 2011 .
[10] Lukasz Brzozowski,et al. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.
[11] Ratan Debnath,et al. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.
[12] G. Konstantatos,et al. Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.
[13] Edward H. Sargent,et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .
[14] Reinhard Schwödiauer,et al. Anodized Aluminum Oxide Thin Films for Room‐Temperature‐Processed, Flexible, Low‐Voltage Organic Non‐Volatile Memory Elements with Excellent Charge Retention , 2011, Advanced materials.
[15] Defa Wang,et al. Tuning the Charge-Transfer Property of PbS-Quantum Dot/TiO2-Nanobelt Nanohybrids via Quantum Confinement , 2010 .
[16] Ratan Debnath,et al. Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.
[17] A. K. Rath,et al. Solution‐Processed Heterojunction Solar Cells Based on p‐type PbS Quantum Dots and n‐type Bi2S3 Nanocrystals , 2011, Advanced materials.
[18] Aram Amassian,et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.
[19] J. Durrant,et al. The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. , 2005, The journal of physical chemistry. B.
[20] Matt Law,et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.
[21] N. S. Sariciftci,et al. The role of the dielectric interface in organic transistors: a combined device and photoemission study , 2010 .
[22] Jianbo Gao,et al. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.
[23] J. Luther,et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.
[24] Ghada I. Koleilat,et al. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.
[25] Richard H. Friend,et al. An improved experimental determination of external photoluminescence quantum efficiency , 1997 .