All‐Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution‐Phase Halide Passivation

A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers.

[1]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[2]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[3]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[4]  Feng Liu,et al.  Metastable Phase in Undercooled Fe-Co Alloy , 2011 .

[5]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[6]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[7]  A Paul Alivisatos,et al.  Photovoltaic performance of ultrasmall PbSe quantum dots. , 2011, ACS nano.

[8]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[9]  Isabella Concina,et al.  Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes , 2011 .

[10]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[11]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[12]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[13]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[14]  Reinhard Schwödiauer,et al.  Anodized Aluminum Oxide Thin Films for Room‐Temperature‐Processed, Flexible, Low‐Voltage Organic Non‐Volatile Memory Elements with Excellent Charge Retention , 2011, Advanced materials.

[15]  Defa Wang,et al.  Tuning the Charge-Transfer Property of PbS-Quantum Dot/TiO2-Nanobelt Nanohybrids via Quantum Confinement , 2010 .

[16]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[17]  A. K. Rath,et al.  Solution‐Processed Heterojunction Solar Cells Based on p‐type PbS Quantum Dots and n‐type Bi2S3 Nanocrystals , 2011, Advanced materials.

[18]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[19]  J. Durrant,et al.  The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. , 2005, The journal of physical chemistry. B.

[20]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[21]  N. S. Sariciftci,et al.  The role of the dielectric interface in organic transistors: a combined device and photoemission study , 2010 .

[22]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.

[23]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[24]  Ghada I. Koleilat,et al.  Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.

[25]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .