The Gödel Completeness Theorem for Uncountable Languages
暂无分享,去创建一个
[1] Czeslaw Bylinski. Functions from a Set to a Set , 2004 .
[2] Hans Hahn. Einführung in die Mathematische Logik , 1932 .
[3] G. Bancerek,et al. Ordinal Numbers , 2003 .
[4] Peter Koepke,et al. Transition of Consistency and Satisfiability under Language Extensions , 2012, Formaliz. Math..
[5] Peter Koepke,et al. Gödel’s Completeness Theorem , 2002 .
[6] Grzegorz Bancerek,et al. Segments of Natural Numbers and Finite Sequences , 1990 .
[7] Edmund Woronowicz. Interpretation and Satisfiability in the First Order Logic , 1990 .
[8] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .
[9] G. Bancerek. Konig's Theorem , 1990 .
[10] Czesław Bylí,et al. A Classical First Order Language , 1990 .
[11] A. Trybulec. Domains and Their Cartesian Products , 1990 .
[12] Czeslaw Bylinski. Some Basic Properties of Sets , 2004 .
[13] Peter Koepke,et al. A Sequent Calculus for First-Order Logic 1 , 2005 .
[14] G. Bancerek. The Fundamental Properties of Natural Numbers , 1990 .
[15] Edmund Woronowicz,et al. Many-Argument Relations , 1990 .
[16] Kenneth Halpern August. The Cardinal Numbers , 1888, Nature.
[17] P. Koepke,et al. Substitution in First-Order Formulas. Part II. The Construction of First-Order Formulas 1 , 2005 .
[18] Piotr Rudnicki,et al. A First Order Language , 1990 .
[19] Edmund Woronowicz. Relations and Their Basic Properties , 2004 .
[20] Equivalences of Inconsistency and Henkin Models , 2007 .
[21] Czeslaw Bylinski. Functions and Their Basic Properties , 2004 .