The Gödel Completeness Theorem for Uncountable Languages

Summary This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.

[1]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[2]  Hans Hahn Einführung in die Mathematische Logik , 1932 .

[3]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[4]  Peter Koepke,et al.  Transition of Consistency and Satisfiability under Language Extensions , 2012, Formaliz. Math..

[5]  Peter Koepke,et al.  Gödel’s Completeness Theorem , 2002 .

[6]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[7]  Edmund Woronowicz Interpretation and Satisfiability in the First Order Logic , 1990 .

[8]  K. Gödel Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .

[9]  G. Bancerek Konig's Theorem , 1990 .

[10]  Czesław Bylí,et al.  A Classical First Order Language , 1990 .

[11]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[12]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[13]  Peter Koepke,et al.  A Sequent Calculus for First-Order Logic 1 , 2005 .

[14]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[15]  Edmund Woronowicz,et al.  Many-Argument Relations , 1990 .

[16]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[17]  P. Koepke,et al.  Substitution in First-Order Formulas. Part II. The Construction of First-Order Formulas 1 , 2005 .

[18]  Piotr Rudnicki,et al.  A First Order Language , 1990 .

[19]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[20]  Equivalences of Inconsistency and Henkin Models , 2007 .

[21]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .