Bats distress vocalizations carry fast amplitude modulations that could represent an acoustic correlate of roughness

[1]  Jay W. Schwartz,et al.  Was That a Scream? Listener Agreement and Major Distinguishing Acoustic Features , 2019, Journal of Nonverbal Behavior.

[2]  A. Abba,et al.  The weeping vocalization of the screaming hairy armadillo (Chaetophractus vellerosus), a distress call , 2019, Journal of Mammalogy.

[3]  Julio C. Hechavarría,et al.  Laminar specificity of oscillatory coherence in the auditory cortex , 2019, Brain Structure and Function.

[4]  Laurent Spinelli,et al.  The rough sound of salience enhances aversion through neural synchronisation , 2019, Nature Communications.

[5]  B. Folt,et al.  Screaming Calls of Leptodactylus savagei (Smoky Jungle Frog) Function as an Alarm for Conspecifics , 2019, Journal of Herpetology.

[6]  K. Zuberbühler,et al.  Correlates of social role and conflict severity in wild vervet monkey agonistic screams , 2019, PloS one.

[7]  S. Vernes,et al.  The Vocal Repertoire of Pale Spear-Nosed Bats in a Social Roosting Context , 2019, Front. Ecol. Evol..

[8]  Uwe Firzlaff,et al.  Processing of fast amplitude modulations in bat auditory cortex matches communication call-specific sound features. , 2019, Journal of neurophysiology.

[9]  Julio C. Hechavarría,et al.  Neuronal coding of multiscale temporal features in communication sequences within the bat auditory cortex , 2018, Communications Biology.

[10]  Julio C. Hechavarría,et al.  Low-Frequency Spike-Field Coherence Is a Fingerprint of Periodicity Coding in the Auditory Cortex , 2018, iScience.

[11]  Jennifer S. Mascaro,et al.  Explaining individual variation in paternal brain responses to infant cries , 2018, Physiology & Behavior.

[12]  I. A. Nääs,et al.  Use of vocalisation to identify sex, age, and distress in pig production , 2018, Biosystems Engineering.

[13]  Kirk N. Olsen,et al.  Listener Expertise Enhances Intelligibility of Vocalizations in Death Metal Music , 2018, Music Perception.

[14]  C. Marler,et al.  The function of ultrasonic vocalizations during territorial defence by pair-bonded male and female California mice , 2018, Animal Behaviour.

[15]  Hugo Merchant,et al.  Monkeys share the neurophysiological basis for encoding sound periodicities captured by the frequency-following response with humans , 2017, Scientific Reports.

[16]  Julio C. Hechavarría,et al.  Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba’s Fruit Eating Bat, Carollia perspicillata , 2017, eNeuro.

[17]  M. Knörnschild,et al.  Territorial choruses of giant otter groups (Pteronura brasiliensis) encode information on group identity , 2017, PloS one.

[18]  Julio C. Hechavarría,et al.  Processing of temporally patterned sounds in the auditory cortex of Seba's short‐tailed bat,Carollia perspicillata , 2017, The European journal of neuroscience.

[19]  Erika Skoe,et al.  Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators , 2017, Hearing Research.

[20]  Julio C. Hechavarría,et al.  Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials , 2016, Scientific Reports.

[21]  Julio C. Hechavarría,et al.  Sharp temporal tuning in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics , 2016, Scientific Reports.

[22]  Julio C. Hechavarría,et al.  The electrocardiogram signal of Seba’s short-tailed bat, Carollia perspicillata , 2016, Journal of Comparative Physiology A.

[23]  Julio C. Hechavarría,et al.  Distress vocalization sequences broadcasted by bats carry redundant information , 2016, Journal of Comparative Physiology A.

[24]  Sylvain Baillet,et al.  Cortical contributions to the auditory frequency-following response revealed by MEG , 2016, Nature Communications.

[25]  M. Knörnschild,et al.  Responsiveness to conspecific distress calls is influenced by day-roost proximity in bats (Saccopteryx bilineata) , 2016, Royal Society Open Science.

[26]  J. Wenstrup,et al.  Two distinct representations of social vocalizations in the basolateral amygdala. , 2016, Journal of neurophysiology.

[27]  M. Knörnschild,et al.  Distress Calls of a Fast-Flying Bat (Molossus molossus) Provoke Inspection Flights but Not Cooperative Mobbing , 2015, PloS one.

[28]  David Poeppel,et al.  Human Screams Occupy a Privileged Niche in the Communication Soundscape , 2015, Current Biology.

[29]  G. Bidelman Multichannel recordings of the human brainstem frequency-following response: Scalp topography, source generators, and distinctions from the transient ABR , 2015, Hearing Research.

[30]  M. Malmierca,et al.  The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding , 2015, Front. Syst. Neurosci..

[31]  W. Fitch,et al.  Overtone-based pitch selection in hermit thrush song: Unexpected convergence with scale construction in human music , 2014, Proceedings of the National Academy of Sciences.

[32]  M. Kössl,et al.  Influence of Ketamine–Xylazine Anaesthesia on Cubic and Quadratic High-Frequency Distortion-Product Otoacoustic Emissions , 2014, Journal of the Association for Research in Otolaryngology.

[33]  J. Kanwal,et al.  Stimulation of the basal and central amygdala in the mustached bat triggers echolocation and agonistic vocalizations within multimodal output , 2014, Front. Physiol..

[34]  M. Manser,et al.  Nonlinearities in Meerkat Alarm Calls Prevent Receivers from Habituating , 2014 .

[35]  Christopher J. Plack,et al.  Pitch coding and pitch processing in the human brain , 2014, Hearing Research.

[36]  Julio C. Hechavarría,et al.  Footprints of inhibition in the response of cortical delay-tuned neurons of bats. , 2014, Journal of neurophysiology.

[37]  Julio C. Hechavarría,et al.  Blurry topography for precise target-distance computations in the auditory cortex of echolocating bats , 2013, Nature Communications.

[38]  G. Marimuthu,et al.  Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics , 2013, Journal of Comparative Physiology A.

[39]  Jasmine M. S. Grimsley,et al.  Social Vocalizations of Big Brown Bats Vary with Behavioral Context , 2012, PloS one.

[40]  J. Kanwal,et al.  Simple Syllabic Calls Accompany Discrete Behavior Patterns in Captive Pteronotus parnellii: An Illustration of the Motivation-Structure Hypothesis , 2012, TheScientificWorldJournal.

[41]  M. Vater,et al.  Comparison of properties of cortical echo delay-tuning in the short-tailed fruit bat and the mustached bat , 2011, Journal of Comparative Physiology A.

[42]  James A. Simmons,et al.  Bats and frogs and animals in between: evidence for a common central timing mechanism to extract periodicity pitch , 2011, Journal of Comparative Physiology A.

[43]  Kerry M. M. Walker,et al.  Cortical encoding of pitch: Recent results and open questions , 2011, Hearing Research.

[44]  J. Kanwal,et al.  Fear Conditioned Discrimination of Frequency Modulated Sweeps within Species-Specific Calls of Mustached Bats , 2010, PloS one.

[45]  Chen-Gia Tsai,et al.  Aggressiveness of the Growl-Like Timbre: Acoustic Characteristics, Musical Implications, and Biomechanical Mechanisms , 2010 .

[46]  Bijan Pesaran,et al.  Chronux: a platform for analyzing neural signals , 2009, BMC Neuroscience.

[47]  Frédéric E. Theunissen,et al.  The Modulation Transfer Function for Speech Intelligibility , 2009, PLoS Comput. Biol..

[48]  L. Rome,et al.  Superfast Vocal Muscles Control Song Production in Songbirds , 2008, PloS one.

[49]  S. Zollinger,et al.  Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations , 2008, Journal of Experimental Biology.

[50]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[51]  Sarah M. N. Woolley,et al.  Modulation Power and Phase Spectrum of Natural Sounds Enhance Neural Encoding Performed by Single Auditory Neurons , 2004, The Journal of Neuroscience.

[52]  P. Racey,et al.  Interspecific responses to distress calls in bats (Chiroptera: Vespertilionidae): a function for convergence in call design? , 2004, Animal Behaviour.

[53]  D. Mennill,et al.  Pitch shifts and song structure indicate male quality in the dawn chorus of black-capped chickadees , 2004, Behavioral Ecology and Sociobiology.

[54]  M. Fenton Eavesdropping on the echolocation and social calls of bats , 2003 .

[55]  D. Rendall Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons. , 2003, The Journal of the Acoustical Society of America.

[56]  H. Heffner,et al.  Hearing in American leaf-nosed bats. II: Carollia perspicillata , 2003, Hearing Research.

[57]  M. Owren,et al.  Nonlinear acoustics in the pant‐hoot vocalization of common chimpanzees (Pan troglodytes) , 2003 .

[58]  S. Zollinger,et al.  Nonlinear phenomena in northern mockingbird (Mimus polyglottos) vocalizations: Acoustics and physiology , 2003 .

[59]  G. Wilkinson 12. Social and Vocal Complexity in Bats , 2003 .

[60]  Synnöve Carlson,et al.  Shared means and meanings in vocal expression of man and macaque , 2003, Logopedics, phoniatrics, vocology.

[61]  Isao Tokuda,et al.  Nonlinear analysis of irregular animal vocalizations. , 2002, The Journal of the Acoustical Society of America.

[62]  S. Sterbing POSTNATAL DEVELOPMENT OF VOCALIZATIONS AND HEARING IN THE PHYLLOSTOMID BAT, CAROLLIA PERSPICILLATA , 2002 .

[63]  Hanspeter Herzel,et al.  Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production , 2002, Animal Behaviour.

[64]  S. Shamma On the role of space and time in auditory processing , 2001, Trends in Cognitive Sciences.

[65]  H. Gouzoules,et al.  Agonistic screams differ among four species of macaques: the significance of motivation-structural rules , 2000, Animal Behaviour.

[66]  K. Esser,et al.  Tonotopic organization and parcellation of auditory cortex in the FM‐bat Carollia perspicillata , 1999, The European journal of neuroscience.

[67]  Tobias Riede,et al.  The harmonic-to-noise ratio applied to dog barks , 1999 .

[68]  Bijan Pesaran,et al.  The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird , 1998, Nature.

[69]  F. Goller Vocal gymnastics and the bird brain , 1998, Nature.

[70]  Hans-Ulrich Schnitzler,et al.  The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper , 1998, Behavioral Ecology and Sociobiology.

[71]  P. Racey,et al.  Intraspecific responses to distress calls of the pipistrelle bat, Pipistrellus pipistrellus , 1998, Animal Behaviour.

[72]  Cynthia F. Moss,et al.  Neuroethological Studies Of Cognitive And Perceptual Processes , 1996 .

[73]  Vladimir V. Popov,et al.  Envelope-following response and modulation transfer function in the dolphin's auditory system , 1995, Hearing Research.

[74]  P. E. Nachtigall,et al.  Modulation rate transfer functions to low-frequency carriers in three species of cetaceans , 1995, Journal of Comparative Physiology A.

[75]  N Suga,et al.  Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. , 1994, The Journal of the Acoustical Society of America.

[76]  R. M. Winn Development of behaviour in a young aye-aye (Daubentonia madagascariensis) in captivity. , 1994, Folia primatologica; international journal of primatology.

[77]  Manfred Kössl,et al.  High frequency distortion products from the ears of two bat species, Megaderma lyra and Carollia perspicillata , 1992, Hearing Research.

[78]  C E Schreiner,et al.  Selectively eliminating cochlear microphonic contamination from the frequency-following response. , 1990, Electroencephalography and clinical neurophysiology.

[79]  P. August Acoustical Properties of the Distress Calls of Artibeus jamaicensis and Phyllostomus hastatus (Chiroptera: Phyllostomidae) , 1985 .

[80]  T. Baer,et al.  Harmonics-to-noise ratio as an index of the degree of hoarseness. , 1982, The Journal of the Acoustical Society of America.

[81]  Ronald E. Crochiere,et al.  A weighted overlap-add method of short-time Fourier analysis/Synthesis , 1980 .

[82]  J. E. Rose,et al.  Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. , 1967, Journal of neurophysiology.

[83]  M. Hoeschele Animal Pitch Perception: Melodies and Harmonies. , 2017, Comparative cognition & behavior reviews.

[84]  G. Marimuthu,et al.  Structure of distress call: implication for specificity and activation of dopaminergic system , 2015, Journal of Comparative Physiology A.

[85]  M. Knörnschild,et al.  Male courtship displays and vocal communication in the polygynous bat Carollia perspicillata , 2014 .

[86]  R. Seyfarth,et al.  Acoustic Features of Female Chacma Baboon Barks , 2001 .

[87]  Manohar M. Panjabi,et al.  Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure , 1999, European Spine Journal.

[88]  H. Herzel,et al.  SUBHARMONICS, BIPHONATION, AND DETERMINISTIC CHAOS IN MAMMAL VOCALIZATION , 1998 .

[89]  Manfred Kössl,et al.  Sound Emission from Cochlear Filters and Foveae – Does the Auditory Sense Organ Make Sense? , 1997, Naturwissenschaften.

[90]  M. Fenton,et al.  Communication in the Chiroptera , 1985 .