THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. I. THE OPHIUCHUS MOLECULAR CLOUD

We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d ~ 125 pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40 M JUP and accretion rates ranging from <10–11 to 10–7 M ☉ yr–1, but most tend to have much lower masses and accretion rates than full disks (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5 M JUP) and negligible accretion (<10–11 M ☉ yr–1), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10–3 and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.

[1]  Robert D. Mathieu,et al.  Evidence for Residual Material in Accretion Disk Gaps: CO Fundamental Emission from the T Tauri Spectroscopic Binary DQ Tauri , 2001 .

[2]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[3]  D. Padgett,et al.  PRIMORDIAL CIRCUMSTELLAR DISKS IN BINARY SYSTEMS: EVIDENCE FOR REDUCED LIFETIMES , 2009, 0903.3057.

[4]  L. Hillenbrand,et al.  Accretion in Young Stellar/Substellar Objects , 2003, astro-ph/0304078.

[5]  E. al.,et al.  From molecular cores to planet-forming disks: An SIRTF legacy program , 2003, astro-ph/0305127.

[6]  Optical Spectroscopy of the Surface Population of the ρ Ophiuchi Molecular Cloud: The First Wave of Star Formation , 2005, astro-ph/0506251.

[7]  LkHα 330: Evidence for Dust Clearing through Resolved Submillimeter Imaging , 2008 .

[8]  J. Porter,et al.  Classical Be Stars , 2003, 1310.3962.

[9]  Laird M. Close,et al.  The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries? , 2006 .

[10]  E. Jensen,et al.  NO TRANSITION DISK? INFRARED EXCESS, PAH, H2, AND X-RAYS FROM THE WEAK-LINED T TAURI STAR DoAr 21 , 2009, 0907.4980.

[11]  R. Alexander From discs to planetesimals: Evolution of gas and dust discs , 2007, 0712.0388.

[12]  Stephen E. Strom,et al.  Demographics of Transition Objects , 2007, 0704.1681.

[13]  L. Loinard,et al.  A Preliminary VLBA Distance to the Core of Ophiuchus, with an Accuracy of 4% , 2008 .

[14]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[15]  R. Mathieu Pre-Main-Sequence Binary Stars , 1994 .

[16]  Jonathan P. Williams,et al.  A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE , 2009, 0903.4455.

[17]  D. Nguyen,et al.  HOW VARIABLE IS ACCRETION IN YOUNG STARS? , 2009, 0902.4235.

[18]  J. Brandt,et al.  New horizons in astronomy , 1972 .

[19]  Caltech,et al.  Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga , 2002, astro-ph/0209164.

[20]  Ulisse Munari,et al.  The Asiago Database on Photometric Systems (ADPS) - II. Band and reddening parameters , 2003 .

[21]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[22]  Jonathan P. Williams,et al.  A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi , 2007, 0708.4185.

[23]  L. Testi,et al.  Accretion in the ρ-Ophiuchi pre-main sequence stars , 2006, astro-ph/0602618.

[24]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[25]  L. Hartmann,et al.  Mid-infrared Spectroscopy of Disks around Classical T Tauri Stars , 2004, astro-ph/0605464.

[26]  D. Wilner,et al.  The Structure of the DoAr 25 Circumstellar Disk , 2008, 0804.0437.

[27]  C. Dullemond,et al.  Coagulation of small grains in disks: The influence of residual infall and initial small-grain content , 2008, 0809.3916.

[28]  High-Resolution Spectroscopy in Tr 37: Gas Accretion Evolution in Evolved Dusty Disks* , 2006, astro-ph/0607534.

[29]  A. Boss,et al.  Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks , 2000, The Astrophysical journal.

[30]  R. Jayawardhana,et al.  Evidence for a T Tauri Phase in Young Brown Dwarfs , 2003, astro-ph/0303565.

[31]  G. Rieke,et al.  24 μm Detections of Circum(sub)stellar Disks in IC 348: Grain Growth and Inner Holes? , 2006 .

[32]  A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars , 2004, astro-ph/0403131.

[33]  L. Hartmann,et al.  Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri , 2005 .

[34]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[35]  B. Merín,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IX. The Serpens YSO Population as Observed with IRAC and MIPS , 2007, 0704.0009.

[36]  Caltech,et al.  THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362 , 2009, 0903.2666.

[37]  Johns Hopkins University,et al.  Disk Accretion onto High-Mass Planets , 1999 .

[38]  L. Prato A Survey for Young Spectroscopic Binary K7-M4 Stars in Ophiuchus , 2006, astro-ph/0611636.

[39]  The Formation of Planets , 1999, astro-ph/9910331.

[40]  Catherine Espaillat,et al.  Confirmation of a Gapped Primordial Disk around LkCa 15 , 2008, 0807.2291.

[41]  Evidence for J- and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages , 2005, astro-ph/0509036.

[42]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[43]  Jonathan P. Williams,et al.  The Masses of Transition Circumstellar Disks: Observational Support for Photoevaporation Models , 2008, 0809.0030.

[44]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[45]  L. Hartmann,et al.  Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer , 2007, 0707.0019.

[46]  C. Soubiran,et al.  On-line determination of stellar atmospheric parameters $T_{\mathrm{eff}}$, $\log g$, [Fe/H] from ELODIE echelle spectra - II. The library of F5 to K7 stars , 1998 .

[47]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004 .

[48]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[49]  S. Leiden,et al.  A multiplicity survey of the ρ Ophiuchi molecular clouds , 2005, astro-ph/0504593.

[50]  F. Walter,et al.  A Search for Protoplanetary Disks Around Naked T Tauri Stars , 1996 .

[51]  P. Andre',et al.  A SCUBA survey of L1689 ¿ the dog that didn't bark , 2006, astro-ph/0603203.

[52]  Andrea Richichi,et al.  A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions , 1995 .

[53]  P. Ho,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[54]  D. Padgett,et al.  The Spitzer c2d Survey of Weak-Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building , 2007, 0706.0563.

[55]  E. Chiang,et al.  Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability , 2007, 0706.1241.

[56]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[57]  F. Gillett,et al.  Debris disks and the formation of planets , 2004 .

[58]  J. Augereau,et al.  Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps , 2007, 0707.0304.

[59]  On the Planet and the Disk of COKU TAURI/4 , 2004, astro-ph/0406445.

[60]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. VII. Ophiuchus Observed with MIPS , 2007, 0709.3492.

[61]  D. Lin,et al.  On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites , 1979 .

[62]  M. Ireland,et al.  The Disk Around CoKu Tauri/4: Circumbinary, Not Transitional , 2008, 0803.2044.

[63]  G. Rieke,et al.  Spitzer Observations of IC 348: The Disk Population at 2-3 Million Years , 2005, astro-ph/0511638.

[64]  Gennaro D'Angelo,et al.  Gas Flow across Gaps in Protoplanetary Disks , 2005, astro-ph/0512292.

[65]  Erick T. Young,et al.  Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope , 2006 .

[66]  L. Hartmann,et al.  The Truncated Disk of CoKu Tau/4 , 2004, astro-ph/0411522.

[67]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[68]  A. Sicilia-Aguilar,et al.  OPTICAL CHARACTERIZATION OF A NEW YOUNG STELLAR POPULATION IN THE SERPENS MOLECULAR CLOUD , 2008, 0810.0829.

[69]  L. Hartmann,et al.  Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. I. Line Profile Observations , 1998 .

[70]  D. Padgett Atmospheric Parameters and Iron Abundances of Low-Mass Pre-Main-Sequence Stars in Nearby Star Formation Regions , 1996 .

[71]  Jean-Philippe Beaulieu,et al.  Extrasolar planets: today and tomorrow , 2004 .

[72]  S. Lubow,et al.  Mass Flow through Gaps in Circumbinary Disks , 1996 .