GPU Accelerated Unconditionally Stable Crank-Nicolson FDTD Method for the Analysis of Three-Dimensional Microwave Circuits

The programmable graphics processing unit (GPU) is employed to accelerate the unconditionally stable Crank-Nicolson flnite-difierence time-domain (CN-FDTD) method for the analysis of microwave circuits. In order to e-ciently solve the linear system from the CN-FDTD method at each time step, both the sparse matrix vector product (SMVP) and the arithmetic operations on vectors in the bi-conjugate gradient stabilized (Bi-CGSTAB) algorithm are performed with multiple processors of the GPU. Therefore, the GPU based BI-CGSTAB algorithm can signiflcantly speed up the CN-FDTD simulation due to parallel computing capability of modern GPUs. Numerical results demonstrate that this method is very efiective and a speedup factor of 10 can be achieved.

[1]  M.M. Okoniewski,et al.  Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU) , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[2]  M.J. Inman,et al.  Programming video cards for computational electromagnetics applications , 2005, IEEE Antennas and Propagation Magazine.

[3]  Walton C. Gibson,et al.  The Method of Moments in Electromagnetics , 2007 .

[4]  Seiji Fujino,et al.  On the Solution of 3-D Frequency Dependent Crank-Nicolson FDTD Scheme , 2009 .

[5]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[6]  D. M. Sheen,et al.  Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits , 1990 .

[7]  C. W. Trueman,et al.  Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations , 2003 .

[8]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[9]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[10]  Tapan K. Sarkar,et al.  ANALYSIS AND MEASUREMENTS OF ARBITRARILY SHAPED OPEN MICROSTRIP STRUCTURES , 1997 .

[11]  Kamal H. Awadalla,et al.  ELECTROMAGNETIC SCATTERING USING GPU-BASED FINITE DIFFERENCE FREQUENCY DOMAIN METHOD , 2009 .

[12]  Z. Nie,et al.  Acceleration of the Method of Moments Calculations by Using Graphics Processing Units , 2008, IEEE Transactions on Antennas and Propagation.

[13]  Guilin Sun,et al.  Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TE/sub z/ waves , 2004, IEEE Transactions on Antennas and Propagation.

[14]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[15]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[16]  Z. Cendes,et al.  S-domain methods for simultaneous time and frequency characterization of electromagnetic devices , 1998 .

[17]  H. Bao,et al.  FROM CPU TO GPU : GPU-BASED ELECTROMAGNETIC COMPUTING ( GPUECO ) , 2008 .