Covering arrays and intersecting codes

A t-covering array is a set of k binary vectors of length n with the property that, in any t coordinate positions, all 2t possibilities occur at least once. Such arrays are used for example in circuit testing, and one wishes to minimize k for given values of n and t. The case t = 2 was solved by Renyi, Katona, and Kleitman and Spencer. The present article is concerned with the case t = 3, where important (but unpublished) contributions were made by Busschbach and Roux in the 1980s. One of the principal constructions makes use of intersecting codes (linear codes with the property that any two nonzero codewords meet). This article studies the properties of 3-covering arrays and intersecting codes, and gives a table of the best 3-covering arrays presently known. For large n the minimal k satisfies 3.21256 < k/log n < 7.56444. © 1993 John Wiley & Sons, Inc.

[1]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[2]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[3]  L. Tippett Statistical Tables: For Biological, Agricultural and Medical Research , 1954 .

[4]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[5]  Joel H. Spencer,et al.  Families of k-independent sets , 1973, Discret. Math..

[6]  G. Katona Two applications (for search theory and truth functions) of Sperner type theorems , 1973 .

[7]  Curtis Greene Sperner Families and Partitions of A Partially Ordered Set , 1975 .

[8]  Gyula O. H. Katona,et al.  Extremal Problems for Hypergraphs , 1975 .

[9]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[10]  S. Winograd,et al.  A new approach to error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[11]  Zoltán Füredi,et al.  Families of Finite Sets in Which No Set Is Covered by the Union of Two Others , 1982, J. Comb. Theory, Ser. A.

[12]  Vojtech Rödl,et al.  On qualitatively independent partitions and related problems , 1983, Discret. Appl. Math..

[13]  Donald T. Tang,et al.  Exhaustive Test Pattern Generation with Constant Weight Vectors , 1983, IEEE Transactions on Computers.

[14]  Gyula O. H. Katona,et al.  Minimal 2-coverings of a finite affine space based on GF(2) , 1983 .

[15]  D. Miklós Linear binary codes with intersection properties , 1984, Discret. Appl. Math..

[16]  Donald T. Tang,et al.  Iterative Exhaustive Pattern Generation for Logic Testing , 1984, IBM J. Res. Dev..

[17]  Mark G. Karpovsky,et al.  Test exhaustif de circuits combinatoires , 1984 .

[18]  Donald T. Tang,et al.  Logic Test Pattern Generation Using Linear Codes , 1984, IEEE Transactions on Computers.

[19]  Michael A. Tsfasman,et al.  Modular curves and codes with a polynomial construction , 1984, IEEE Trans. Inf. Theory.

[20]  Gérard D. Cohen,et al.  Linear intersecting codes , 1985, Discret. Math..

[21]  R. Calderbank,et al.  The Geometry of Two‐Weight Codes , 1986 .

[22]  Noga Alon,et al.  Explicit construction of exponential sized families of k-independent sets , 1986, Discret. Math..

[23]  Bernd Becker,et al.  How robust is the n-cube? , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[24]  G. Roux K-proprietes dans des tableaux de n colonnes : cas particulier de la k-surjectivite et de la k-permutivite , 1987 .

[25]  Tom Verhoeff,et al.  An updated table of minimum-distance bounds for binary linear codes , 1987, IEEE Trans. Inf. Theory.

[26]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[27]  Gadiel Seroussi,et al.  Vector sets for exhaustive testing of logic circuits , 1988, IEEE Trans. Inf. Theory.

[28]  Zsolt Tuza,et al.  On the maximum number of qualitatively independent partitions , 1989, J. Comb. Theory, Ser. A.

[29]  Gérard D. Cohen,et al.  Coding for write-unidirectional memories and conflict resolution , 1989, Discret. Appl. Math..

[30]  Charles T. Retter Intersecting Goppa codes , 1989, IEEE Trans. Inf. Theory.

[31]  Moni Naor,et al.  Small-bias probability spaces: efficient constructions and applications , 1990, STOC '90.

[32]  Gérard D. Cohen,et al.  Applications of coding theory to communication combinatorial problems , 1990, Discret. Math..

[33]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[34]  J. D. Key,et al.  Hadamard matrices and their designs: a coding-theoretic approach , 1992 .

[35]  I. Honkala A Graham-Sloane Type Construction for s-Surjective Matrices , 1992 .

[36]  János Körner,et al.  Compressing inconsistent data , 1994, IEEE Trans. Inf. Theory.

[37]  Luisa Gargano,et al.  Capacities: From Information Theory to Extremal Set Theory , 1994, J. Comb. Theory, Ser. A.

[38]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .