An Exact Method for a Discrete Multiobjective Linear Fractional Optimization

Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.

[1]  Rafael Caballero,et al.  The controlled estimation method in the multiobjective linear fractional problem , 2004, Comput. Oper. Res..

[2]  Bela Martos,et al.  Nonlinear programming theory and methods , 1977 .

[3]  Boyan Metev,et al.  A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems , 2000, Eur. J. Oper. Res..

[4]  A. Cambini,et al.  A survey of bicriteria fractional problems , 1999 .

[5]  Xavier Gandibleux,et al.  An Annotated Bibliography of Multiobjective Combinatorial Optimization , 2000 .

[6]  Anass Nagih,et al.  Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution , 1999, RAIRO Oper. Res..

[7]  D. Granot,et al.  On Integer and Mixed Integer Fractional Programming Problems , 1977 .

[8]  Ralph E. Steuer,et al.  Multiple Objective Linear Fractional Programming , 1981 .

[9]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[10]  João Paulo Costa,et al.  Computing non-dominated solutions in MOLFP , 2007, Eur. J. Oper. Res..

[11]  I. M. Stancu-Minasian,et al.  A sixth bibliography of fractional programming , 2006 .

[12]  Laura Martein,et al.  Equivalence in linear fractional programming , 1992 .

[13]  M. Chakraborty,et al.  Fuzzy mathematical programming for multi objective linear fractional programming problem , 2002, Fuzzy Sets Syst..

[14]  C Tofallis,et al.  Fractional Programming: Theory, Methods and Applications , 1997, J. Oper. Res. Soc..

[15]  S. Schaible Fractional programming: Applications and algorithms , 1981 .

[16]  S. Zionts,et al.  Programming with linear fractional functionals , 1968 .

[17]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[18]  Omar M. Saad,et al.  Bicriterion integer linear fractional programs with parameters in the objective functions , 1998 .