Farthest-polygon Voronoi diagrams

Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(nlog^3n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region.

[1]  Anil Maheshwari,et al.  A Coarse Grained Parallel Algorithm for Hausdorff Voronoi Diagrams , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[2]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[3]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[4]  Asish Mukhopadhyay,et al.  An Optimal Algorithm for the Intersection Radius of a Set of Convex Polygons , 1996, J. Algorithms.

[5]  J. Molnár,et al.  Über Eine Verallgemeinerung Auf die Kugelfläche Eines Topologischen Satzes von Helly , 1956 .

[6]  Marc van Kreveld,et al.  AUTOMATED LABEL PLACEMENT FOR GROUPS OF ISLANDS , 2005 .

[7]  Sang Won Bae,et al.  The geodesic farthest-site Voronoi diagram in a polygonal domain with holes , 2009, SCG '09.

[8]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.

[9]  R. Ho Algebraic Topology , 2022 .

[10]  Rolf Klein,et al.  Smallest Color-Spanning Objects , 2001, ESA.

[11]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[12]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[15]  Evanthia Papadopoulou,et al.  The Hausdorff Voronoi Diagram of Point Clusters in the Plane , 2003, Algorithmica.

[16]  Franz Aurenhammer,et al.  Farthest line segment Voronoi diagrams , 2006, Inf. Process. Lett..

[17]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[18]  Ketan Mulmuley A Fast Planar Partition Algorithm, I , 1990, J. Symb. Comput..

[19]  Rolf Klein,et al.  The Farthest Color Voronoi Diagram and Related Problems , 2001 .

[20]  Kurt Mehlhorn,et al.  Furthest Site Abstract Voronoi Diagrams , 2001, Int. J. Comput. Geom. Appl..