Properties and numerical evaluation of the Rosenblatt distribution

This paper studies various distributional properties of the Rosenblatt distribution. We begin by describing a technique for computing the cumulants. We then study the expansion of the Rosenblatt distribution in terms of shifted chi-squared distributions. We derive the coefficients of this expansion and use these to obtain the L\'{e}vy-Khintchine formula and derive asymptotic properties of the L\'{e}vy measure. This allows us to compute the cumulants, moments, coefficients in the chi-square expansion and the density and cumulative distribution functions of the Rosenblatt distribution with a high degree of precision. Tables are provided and software written to implement the methods described here is freely available by request from the authors.

[1]  Murad S. Taqqu,et al.  Wiener Chaos: Moments, Cumulants and Diagrams: A Survey with Computer Implementation , 2014 .

[2]  M. Taqqu Th e Rosenblatt Process , 2011 .

[3]  Richard A. Davis,et al.  The Rosenblatt Process , 2011 .

[4]  Berry-Esseen and Edgeworth approximations for the tail of an infinite sum of weighted gamma random variables , 2010, 1010.3948.

[5]  A Technique for Computing the PDFs and CDFs of Nonnegative Infinitely Divisible Random Variables , 2010, 1005.2614.

[6]  Yongdong Zhang,et al.  A Fast Collocation Method for Eigen-Problems of Weakly Singular Integral Operators , 2009, J. Sci. Comput..

[7]  K. B. Oldham,et al.  An Atlas of Functions: with Equator, the Atlas Function Calculator , 2008 .

[8]  I. Shevtsova Sharpening of the Upper Bound of the Absolute Constant in the Berry–Esseen Inequality , 2007 .

[9]  Sun-Yeong Heo,et al.  Distribution of a Sum of Weighted Noncentral Chi-Square Variables , 2006 .

[10]  C. Tudor Analysis of the Rosenblatt process , 2006, math/0606602.

[11]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[12]  On a class of Lévy processes , 2005 .

[13]  A. Castaño-Martínez,et al.  Distribution of a sum of weighted noncentral chi-square variables , 2005 .

[14]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[15]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[16]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[17]  Alain Largillier,et al.  Spectral Computations for Bounded Operators , 2001 .

[18]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[19]  J. Albin A note on Rosenblatt distributions , 1998 .

[20]  Spectral properties of the operator of Riesz potential type , 1998 .

[21]  S. Haberman Independence and Dependence , 1996 .

[22]  Peter J. Smith A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice Versa , 1995 .

[23]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[24]  P. Major Multiple Wiener-Ito Integrals: With Applications to Limit Theorems , 1981 .

[25]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[26]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[27]  Alastair Spence Error bounds and estimates for eigenvalues of integral equations , 1978 .

[28]  M. Birman,et al.  ESTIMATES OF SINGULAR NUMBERS OF INTEGRAL OPERATORS , 1977 .

[29]  Ian H. Sloan Iterated Galerkin Method for Eigenvalue Problems , 1976 .

[30]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[31]  Alastair Spence On the convergence of the Nyström method for the integral equation eigenvalue problem , 1975 .

[32]  K. Atkinson THE NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR COMPACT INTEGRAL OPERATORS , 2008 .

[33]  A. Zemanian Distribution Theory and Transform Analysis; An Introduction to Generalized Functions, With Applications , 1965 .

[34]  ASYMPTOTIC BEHAVIOR OF EIGENVALUES FOR A CLASS OF INTEGRAL EQUATIONS WITH TRANSLATION KERNELS , 1962 .

[35]  Distribution of eigenvalues of certain integral operators. , 1955 .