Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies

The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5–18% of present levels—a change that may also have triggered the evolution of animals.

[1]  N. Moran,et al.  A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  L. V. Berkner,et al.  On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere , 1965 .

[3]  M. Goldhaber,et al.  CONTROLS AND CONSEQUENCES OF SULFATE REDUCTION RATES IN RECENT MARINE SEDIMENTS , 1975 .

[4]  R. Moore,et al.  Treatise on Invertebrate Paleontology , 1950 .

[5]  H. D. Holland,et al.  The Flin Flon paleosol and the composition of the atmosphere 1.8 BYBP. , 1989, American journal of science.

[6]  S. Sommer,et al.  Sedimentary iron monosulfides: Kinetics and mechanism of formation , 1981 .

[7]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[8]  C R Woese,et al.  The phylogeny of prokaryotes. , 1980, Microbiological sciences.

[9]  K. Finster,et al.  Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese , 1993, Applied and environmental microbiology.

[10]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[11]  S. King,et al.  Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench , 1991 .

[12]  A. Knoll Biological and Biogeochemical Preludes to the Ediacaran Radiation , 1992 .

[13]  R. Reid,et al.  Sulfide-oxidizing symbiosis in Lucinaceans! implications for bivalve evolution , 1986 .

[14]  J. Schopf,et al.  The Proterozoic Biosphere: The Proterozoic Biosphere , 1992 .

[15]  R. Squires,et al.  First Oligocene records of Calyptogena (Bivalvia: Vesicomyidae) , 1993 .

[16]  H. Krouse,et al.  Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate , 1995 .

[17]  M. Polz,et al.  Phylogenetic relationships of the filamentous sulfur bacterium Thiothrix ramosa based on 16S rRNA sequence analysis. , 1996, International journal of systematic bacteriology.

[18]  D. Canfield,et al.  Pathways of organic carbon oxidation in three continental margin sediments. , 1993, Marine geology.

[19]  Manfred Schidlowski,et al.  The Initiation of Biological Processes on Earth , 1993 .

[20]  M. Glaessner Geographic Distribution and Time Range of the Ediacara Precambrian Fauna , 1971 .

[21]  A. Knoll,et al.  Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northern Siberia , 1995, Journal of Paleontology.

[22]  J. Beatty,et al.  The sulfur cycle in the chemocline of a meromictic salt lake , 1996 .

[23]  A. Teske,et al.  Phylogeny of Thioploca and Related Filamentous Sulfide-Oxidizing Bacteria , 1995 .

[24]  G J Olsen,et al.  Evolutionary relationships among sulfur- and iron-oxidizing eubacteria , 1992, Journal of bacteriology.

[25]  A. Knoll,et al.  Calibrating rates of early Cambrian evolution. , 1993, Science.

[26]  C. Cavanaugh Microbial Symbiosis: Patterns of Diversity in the Marine Environment , 1994 .

[27]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[28]  B. Jørgensen,et al.  Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor , 1990, Nature.

[29]  K. Towe Oxygen-collagen priority and the early metazoan fossil record. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[31]  M. L. Jensen,et al.  The kinetic isotope effect in the bacterial reduction and oxidation of sulfur , 1964 .

[32]  H. D. Holland The chemistry of the atmosphere and oceans , 1978 .

[33]  B. Jørgensen,et al.  A Thiosulfate Shunt in the Sulfur Cycle of Marine Sediments , 1990, Science.

[34]  H. Thode,et al.  The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies , 1968 .

[35]  Jørgensen Bb Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. , 1982 .

[36]  L. A. Chambers,et al.  Microbiological fractionation of stable sulfur isotopes: A review and critique , 1979 .

[37]  U. Fischer,et al.  Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis , 1982 .

[38]  J. Bryant,et al.  Influence of freshwater flux on 87Sr/86Sr chronostratigraphy in marginal marine environments and dating of vertebrate and invertebrate faunas , 1995, Journal of Paleontology.

[39]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[40]  N. Beukes,et al.  A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. , 1990, American journal of science.

[41]  H. Schwarcz,et al.  A Sulfur Isotopic Study of the White Pine Mine, Michigan , 1972 .

[42]  B. Jørgensen,et al.  Sulfide oxidation in the anoxic Black Sea chemocline , 1991 .

[43]  H. Strauss The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record , 1993 .

[44]  D. Canfield,et al.  Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca , 1995, Nature.

[45]  H. Ohmoto,et al.  3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. , 1993, Science.