Domain dynamics engineering in ergodic relaxor ferroelectrics for dielectric energy storage

[1]  Zhengqian Fu,et al.  Giant dynamic electromechanical response via field driven pseudo-ergodicity in nonergodic relaxors , 2023, Nature communications.

[2]  Gang Wang,et al.  ε‐Ga2O3: An Emerging Wide Bandgap Piezoelectric Semiconductor for Application in Radio Frequency Resonators , 2022, Advanced science.

[3]  R. Zuo,et al.  Supercritical Relaxor Nanograined Ferroelectrics for Ultrahigh‐Energy‐Storage Capacitors , 2022, Advanced materials.

[4]  Qinghua Zhang,et al.  High-entropy enhanced capacitive energy storage , 2022, Nature Materials.

[5]  Shifeng Zhao,et al.  Capturing Carriers and Driving Depolarization by Defect Engineering for Dielectric Energy Storage. , 2022, ACS applied materials & interfaces.

[6]  Yanbin Wang,et al.  Ultra-high energy storage density of transparent capacitors based on linear dielectric ZrO2 thin films with the thickness scaled up to hundreds nanometers , 2022, Applied Physics Letters.

[7]  Yunfei Liu,et al.  Optimized energy-storage performance in Mn-doped Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 lead-free dielectric thin films , 2022, Applied Surface Science.

[8]  K. Persson,et al.  Exploring the Pb1−xSrxHfO3 System and Potential for High Capacitive Energy Storage Density and Efficiency , 2021, Advanced materials.

[9]  Qinghua Zhang,et al.  Ultrahigh energy storage in superparaelectric relaxor ferroelectrics , 2021, Science.

[10]  Ge Wang,et al.  Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives , 2021, Chemical reviews.

[11]  Zhongshuai Liang,et al.  Effect of mosaicity on energy storage performance of epitaxial BaZr0.35Ti0.65O3 films , 2021 .

[12]  J. Ouyang,et al.  Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins , 2021 .

[13]  Miin-Jang Chen,et al.  Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors , 2021 .

[14]  J. Zhai,et al.  High energy storage density with high power density in Bi0.2Sr0.7TiO3/BiFeO3 multilayer thin films , 2021 .

[15]  Yang Shen,et al.  Toroidal polar topology in strained ferroelectric polymer , 2021, Science.

[16]  Shifeng Zhao,et al.  Ultrahigh Energy Storage Performances Induced by Weaker La–O Orbital Hybridization in (Na0.85K0.15)0.5Bi4.5 – xLaxTi4O15 Relaxor Ferroelectric Films , 2021 .

[17]  Z. Pan,et al.  Internal-strain release and remarkably enhanced energy storage performance in PLZT–SrTiO3 multilayered films , 2020, Applied Physics Letters.

[18]  Shifeng Zhao,et al.  Energy storage performances regulated by BiMnO3 proportion in limited solid solution films , 2020 .

[19]  J. Ouyang,et al.  Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 Ultracapacitors , 2020, Advanced Energy Materials.

[20]  Shifeng Zhao,et al.  Flexible lead-free Na0.5Bi0.5TiO3–EuTiO3 solid solution film capacitors with stable energy storage performances , 2020 .

[21]  J. Chu,et al.  Phase transition of Bi5Ti3FeO15 ceramics discovered by Raman spectroscopy and in situ synchrotron XRD under stress field , 2020 .

[22]  L. Martin,et al.  Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films , 2020, Science.

[23]  Wei Wu,et al.  Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics , 2020 .

[24]  J. Zhai,et al.  Fatigue‐Free Aurivillius Phase Ferroelectric Thin Films with Ultrahigh Energy Storage Performance , 2020, Advanced Energy Materials.

[25]  M. Guennou,et al.  Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials , 2020, Nature Reviews Physics.

[26]  J. MacManus‐Driscoll,et al.  Lead-free relaxor thin films with huge energy density and low loss for high temperature applications , 2020, Nano Energy.

[27]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[28]  Shifeng Zhao,et al.  The role of PN-like junction effects in energy storage performances for Ag2O nanoparticle dispersed lead-free K0.5Na0.5NbO3-BiMnO3 films. , 2020, Nanoscale.

[29]  Anubhav Jain,et al.  An automatically curated first-principles database of ferroelectrics , 2020, Scientific Data.

[30]  N. Zhang,et al.  Transparent ferroelectric crystals with ultrahigh piezoelectricity , 2020, Nature.

[31]  Weili Li,et al.  Perovskite Sr1-x(Na0.5Bi0.5)xTi0.99Mn0.01O3 thin films with defect dipoles for high energy storage and electrocaloric performance. , 2019, ACS applied materials & interfaces.

[32]  Qinghua Zhang,et al.  Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design , 2019, Science.

[33]  Yu Zhao,et al.  Ultrahigh energy storage and electrocaloric performance achieved in SrTiO3 amorphous thin films via polar cluster engineering , 2019, Journal of Materials Chemistry A.

[34]  E. Tsymbal,et al.  Freestanding crystalline oxide perovskites down to the monolayer limit , 2019, Nature.

[35]  X. Tan,et al.  Dual-stimuli in-situ TEM study on the nonergodic/ergodic crossover in the 0.75(Bi1/2Na1/2)TiO3–0.25SrTiO3 relaxor , 2019, Applied Physics Letters.

[36]  A. Gruverman,et al.  Piezoresponse force microscopy and nanoferroic phenomena , 2019, Nature Communications.

[37]  Changhong Yang,et al.  Fatigue‐Free and Bending‐Endurable Flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance , 2019, Advanced Energy Materials.

[38]  Geon‐Tae Hwang,et al.  High‐Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook , 2018, Advanced Functional Materials.

[39]  Qinghua Zhang,et al.  Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls , 2018, Nature Nanotechnology.

[40]  H. Yan,et al.  Crystal Chemistry and Magnetic Properties of Gd-Substituted Aurivillius-Type Bi5FeTi3O15 Ceramics , 2018, The Journal of Physical Chemistry C.

[41]  Tiandong Zhang,et al.  High Energy Storage Performance of Opposite Double‐Heterojunction Ferroelectricity–Insulators , 2018 .

[42]  J. Íñiguez,et al.  Designing lead-free antiferroelectrics for energy storage , 2017, Nature Communications.

[43]  X. Lou,et al.  Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics , 2017 .

[44]  X. Tan,et al.  Disrupting long-range polar order with an electric field , 2016 .

[45]  Zhigao Hu,et al.  Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence , 2014 .

[46]  A. Kholkin,et al.  Optical Properties of Lead-Free NKN Films from Transmission and Spectral Ellipsometry , 2013 .

[47]  X. Tan,et al.  Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics. , 2012, Physical review letters.

[48]  P. Bristowe,et al.  Ab initio energetics of lanthanum substitution in ferroelectric bismuth titanate , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  G.-M. Rotaru,et al.  Relaxing with relaxors: a review of relaxor ferroelectrics , 2011 .

[50]  Rui Wang,et al.  First-principles study of the cubic perovskites BiMO3 (M=Al, Ga, In, and Sc) , 2007 .

[51]  X. Meng,et al.  Electrical and optical properties of Pb(Mg1∕3Nb2∕3)O3–PbTiO3 thin films prepared by chemical solution deposition , 2005 .

[52]  Nicola A. Spaldin,et al.  Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics , 2005 .

[53]  Y. Kubo,et al.  Crystal and electronic structures of Bi4−xLaxTi3O12 ferroelectric materials , 2001 .

[54]  W. S. Graswinckel,et al.  Optical Response of High-Dielectric-Constant Perovskite-Related Oxide , 2001, Science.

[55]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[56]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[57]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[58]  Zhonglin Shen,et al.  Ultrahigh Energy Density of Poly(vinylidene fluoride) from Synergistically Improved Dielectric Constant and Withstand Voltage by Tuning Crystallization Behavior , 2021, Journal of Materials Chemistry A.

[59]  J. Zhai,et al.  Substantially improved energy storage capability of ferroelectric thin films for application in high-temperature capacitors , 2021, Journal of Materials Chemistry A.

[60]  Chunrui Ma,et al.  Silicon-integrated lead-free BaTiO3-based film capacitors with excellent energy storage performance and highly stable irradiation resistance , 2021 .

[61]  Relaxor Ferroelectrics,et al.  Relaxor Ferroelectrics , 2018 .

[62]  J. Ouyang,et al.  Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling ☆ , 2017 .

[63]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[64]  L. Cross Relaxorferroelectrics: An overview , 1994 .