Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ) photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs), and donor–acceptor (D–A) blend ratios employed to control the active-layer morphologies are all discussed.

[1]  Chunhui Huang,et al.  Heterojunction organic solar cells based on donor-π-acceptor small molecule layers with controlled interface morphology , 2010 .

[2]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[3]  Luping Yu,et al.  Development of Semiconducting Polymers for Solar Energy Harvesting , 2010 .

[4]  Chun-Wei Chen,et al.  Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing , 2008 .

[5]  J. Jung,et al.  Study of MEH–PPV/PCBM active layer morphology and its application for hybrid solar cell performance , 2012, Bulletin of Materials Science.

[6]  Andreas Schüler,et al.  Nanostructured materials for solar energy conversion , 2005 .

[7]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[8]  T. Kraft,et al.  Organic solar cell materials and active layer designs-improvements with carbon nanotubes: a review , 2012 .

[9]  Ke-Jian Jiang,et al.  The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell , 2007 .

[10]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[11]  Paul Heremans,et al.  P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics , 2006 .

[12]  G. Sharma,et al.  Effect of solvent and subsequent thermal annealing on the performance of phenylenevinylene copolymer: PCBM solar cells. , 2010, ACS applied materials & interfaces.

[13]  Klaus Meerholz,et al.  Morphology Control in Solution‐Processed Bulk‐Heterojunction Solar Cell Mixtures , 2009 .

[14]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[15]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[16]  Martin A. Green,et al.  17.8-percent efficiency polycrystalline silicon solar cells , 1990 .

[17]  D. Venkataraman,et al.  Strategies for controlling the active layer morphologies in OPVs , 2012 .

[18]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[19]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[20]  G. Pan,et al.  Polymer Photovoltaic Cells Based on Solution‐Processable Graphene and P3HT , 2009 .

[21]  A. Troisi,et al.  Theoretical Study of the Organic Photovoltaic Electron Acceptor PCBM: Morphology, Electronic Structure, and Charge Localization† , 2010 .

[22]  J. Moon,et al.  Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells , 2012 .

[23]  M. Skompska Hybrid conjugated polymer/semiconductor photovoltaic cells , 2010 .

[24]  J. Kenny,et al.  Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells , 2008 .

[25]  M. Urien,et al.  Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent , 2011 .

[26]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[27]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[28]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[29]  Yan Wang,et al.  A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property , 2009 .

[30]  J. Nunzi,et al.  High Molecular Weights, Polydispersities, and Annealing Temperatures in the Optimization of Bulk‐Heterojunction Photovoltaic Cells Based on Poly(3‐hexylthiophene) or Poly(3‐butylthiophene) , 2006 .

[31]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[32]  Unraveling the Role of Morphology on Organic Solar Cell Performance , 2010, 1011.0956.

[33]  Kwanghee Lee,et al.  Morphology controlled bulk-heterojunction layers of fully electro-spray coated organic solar cells , 2012 .

[34]  L. Etgar,et al.  Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. , 2012, ACS nano.

[35]  Mm Martijn Wienk,et al.  Small band gap polymers based on diketopyrrolopyrrole , 2010 .

[36]  Jean Roncali,et al.  Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications , 2007 .

[37]  Klaus Meerholz,et al.  Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells , 2011 .

[38]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[39]  Valentin D. Mihailetchi,et al.  Origin of the enhanced performance in poly"3-hexylthiophene…: †6,6‡-phenyl C 61 -butyric acid methyl ester solar cells upon slow drying of the active layer , 2006 .

[40]  S. H. Haung,et al.  Preparation of active layer of solar cells device by F8T2 blending with PCBM , 2010, 2010 IEEE CPMT Symposium Japan.

[41]  M. Fuji,et al.  Gelcasting fabrication of porous ceramics using a continuous process , 2006 .

[42]  H. Chang,et al.  Effects of various solvent addition on crystal and electrical properties of organic solar cells with P3HT:PCBM active layer , 2012 .

[43]  Xue Yong,et al.  Theoretical investigations for organic solar cells , 2013 .

[44]  H. V. D. van der Zant,et al.  Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. , 2011, Nature nanotechnology.

[45]  V. Narang,et al.  Investigate the role of the active layers' structures and morphology in the performance of the organic solar cell devices , 2013 .

[46]  W. Su,et al.  Facile hot solvent vapor annealing for high performance polymer solar cell using spray process , 2013 .

[47]  Paul W. M. Blom,et al.  Optimum charge carrier mobility in organic solar cells , 2007 .

[48]  George D. Spyropoulos,et al.  Solution-processable graphene linked to 3,5-dinitrobenzoyl as an electron acceptor in organic bulk heterojunction photovoltaic devices , 2012 .

[49]  R. F. W. Pease,et al.  Structure in Thin and Ultrathin Spin-Cast Polymer Films , 1996, Science.

[50]  Chain-Shu Hsu,et al.  Conjugated polymer nanostructures for organic solar cell applications , 2011 .

[51]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[52]  U. Asawapirom,et al.  Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells , 2010 .

[53]  Pierre-Antoine Bouit,et al.  Organic photovoltaics: a chemical approach. , 2010, Chemical communications.

[54]  Zaifang Li,et al.  Solution processable D–A small molecules for bulk-heterojunction solar cells , 2010 .

[55]  Ling-I Hung,et al.  Low-bandgap conjugated polymer for high efficient photovoltaic applications. , 2010, Chemical communications.

[56]  S. Jenekhe,et al.  Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s , 2005 .

[57]  P. Heremans,et al.  Polythiophene based bulk heterojunction solar cells: morphology and its implications , 2006 .

[58]  Samson A Jenekhe,et al.  Highly efficient solar cells based on poly(3-butylthiophene) nanowires. , 2008, Journal of the American Chemical Society.

[59]  K. W. Böer,et al.  Direct conversion of solar energy through photovoltaic cells , 1975 .

[60]  Lluís F. Marsal,et al.  Influence and relationship of film morphology on Organic Solar Cells manufactured with different P3HT:PC[70]BM blend solutions , 2011, 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control.

[61]  A. Jen,et al.  Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[62]  Tobin J. Marks,et al.  Efficient squaraine-based solution processable bulk-heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[63]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[64]  J. Moon,et al.  Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. , 2011, Nano letters.

[65]  Shinuk Cho,et al.  Effect of processing additive on the nanomorphology of a bulk heterojunction material. , 2010, Nano letters.

[66]  P. Frère,et al.  Molecular and supramolecular engineering of π-conjugated systems for photovoltaic conversion , 2006 .

[67]  K. Tu,et al.  Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. , 2010, ACS nano.

[68]  Niyazi Serdar Sariciftci,et al.  Conjugated polymer photovoltaic devices and materials , 2006 .

[69]  Sung-Hwan Han,et al.  Effect of solvents on the performance and morphology of polymer photovoltaic devices , 2010 .

[70]  Michael Niggemann,et al.  Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells , 2006 .

[71]  Zhenan Bao,et al.  Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing , 2012 .

[72]  J. S. Kim,et al.  High‐Efficiency Organic Solar Cells Based on Preformed Poly(3‐hexylthiophene) Nanowires , 2011 .

[73]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[74]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[75]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[76]  Luping Yu,et al.  Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. , 2010, The journal of physical chemistry. B.

[77]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[78]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[79]  A. Heeger,et al.  High‐Efficiency Polymer Solar Cells Enhanced by Solvent Treatment , 2013, Advanced materials.

[80]  Zhenan Bao,et al.  Solvent additives and their effects on blend morphologies of bulk heterojunctions , 2011 .

[81]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[82]  Yu-Min Shen,et al.  Improvement of surface morphology of thin films and performance by applying electric field on P3HT:PCBM based solar cells , 2012 .

[83]  Fei Huang,et al.  23% enhanced efficiency of polymer solar cells processed with 1-chloronaphthalene as the solvent additive , 2013 .

[84]  D. Ginger,et al.  Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester. , 2011, ACS nano.

[85]  Luping Yu,et al.  Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. , 2011, Journal of the American Chemical Society.

[86]  Bong-Gi Kim,et al.  Effective variables to control the fill factor of organic photovoltaic cells. , 2009, ACS applied materials & interfaces.

[87]  Ching-Fuh Lin,et al.  Influence of mixed solvent on the morphology of the P3HT:Indene-C60 bisadduct (ICBA) blend film and the performance of inverted polymer solar cells , 2013 .

[88]  D. Ginger,et al.  Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. , 2013, The journal of physical chemistry letters.

[89]  Richard H Friend,et al.  Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy. , 2010, Nano letters.

[90]  Ligui Li,et al.  Precise construction of PCBM aggregates for polymer solar cells via multi-step controlled solvent vapor annealing , 2010 .

[91]  Spin-enhanced organic bulk heterojunction photovoltaic solar cells. , 2012, Nature communications.

[92]  Nelson E. Coates,et al.  Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk heterojunction composites with PC 70 BM , 2010 .

[93]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[94]  B. Chin,et al.  Effect of Active Layer Morphology on Poly3-Hexylthiophene Phytochemical Chemiresistor Sensor Performance , 2012, IEEE Sensors Journal.

[95]  A. Nogueira,et al.  Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells , 2013 .

[96]  Ching Wan Tang,et al.  Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices , 2010 .

[97]  T. Kubo,et al.  Nanostructured Organic Bulk Heterojunction Solar Cells , 2006 .

[98]  R. Service,et al.  Solar energy. Outlook brightens for plastic solar cells. , 2011, Science.

[99]  C. Brabec,et al.  Plastic Solar Cells , 2001 .