Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation

This paper presents an experimental investigation of the mechanical behavior and failure mechanism of three-dimensional (3D) orthogonal woven CFRP composite panels. The 3D composite panels are preformed using Torayca T-300 (3K) carbon fiber, and then infused with the Epicote 828 epoxy resin. The nominal proportions of the stuffer yarn, the filler yarn and the warp weaver (or z yarn) are 1:1.2:0.2, respectively, and the overall fiber volume fraction is 43%. The 3D fiber architectures are measured and visualized in a micrograph form. Quasi-static tensile coupon tests are carried out to measure the in-plane Young's modulus, Poisson's ratio, tensile failure strengths and failure strains in both stuffer and filler yarn directions. Test results reveal that the average Young's modulus in the filler yarn direction is higher than that in the stuffer yarn direction, and the average failure strain in the filler yarn direction is lower than that in the stuffer yarn direction. The average failure strength in the filler yarn direction is slightly higher than that in the stuffer yarn direction. The fracture surfaces are studied using the scanning electron microscope (SEM) and the failure mechanism are then discussed. It is noted by studying the fracture surface that the fracture surface is always perpendicular to the loading direction. The crack causes the z yarn/matrix interface to debond. Also, the fracture of specimen cut along the x- (or stuffer yarn) direction causes filler yarn/matrix interface to debond and stuffer yarn to break, and the fracture of specimen cut along the y- (or filler yarn) direction causes stuffer yarn/matrix interface to debond and filler yarn to break. The testing results are then used to validate the developed models in Parts II and III of these series papers. In Part II, simplified analytical and finite element models are proposed to predict the mechanical property and failure strengths for the 3D orthogonal woven CFRP composites. In Part III, a curved beam model resting on an elastic foundation is presented to predict the tensile strength in the filler direction, and then to investigate the effect of some geometrical parameters on the tensile failure strength in the filler yarn direction.