Theoretical calculation about the valence and rydberg excited states of hydrogen cyanide

The singlet and triplet excited states of hydrogen cyanide have been computed by using the complete active space self‐consistent field and completed active space second order perturbation methods with the atomic natural orbital (ANO‐L) basis set. Through calculations of vertical excitation energies, we have probed the transitions from ground state to valence excited states, and further extensions to the Rydberg states are achieved by adding 1s1p1d Rydberg orbitals into the ANO‐L basis set. Four singlet and nine triplet excited states have been optimized. The computed adiabatic energies and the vertical transition energies agree well with the available experimental data and the inconsistencies with the available theoretical reports are discussed in detail. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011

[1]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[2]  D. Buhl,et al.  HCN radio emission from Comet Kohoutek (1973f) , 1974 .

[3]  S. Krishnamachari,et al.  Electronic Absorption Spectra of HNC and DNC , 1986 .

[4]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[5]  T. Kondow,et al.  Absorption spectra of hydrogen cyanide and deuterium cyanide in the 130-80 nm range , 1981 .

[6]  J. Mentall,et al.  Photochemistry and lifetimes of interstellar molecules , 1972 .

[7]  Donald F. Hornig,et al.  Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra. , 1956 .

[8]  A. Walsh 468. The electronic orbitals, shapes, and spectra of polyatomic molecules. Part III. HAB and HAAH molecules , 1953 .

[9]  G. Schwenzer,et al.  Geometries of the excited electronic states of HCN , 1974 .

[10]  R. Chaudhuri,et al.  Theoretical study on the excited states of HCN. , 2005, The Journal of chemical physics.

[11]  L. Åsbrink,et al.  Valence excitation of linear molecules.I. Excitation and UV spectra of N2, Co, acetylene and HCN , 1978 .

[12]  M. Jungen,et al.  Universal Gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions , 1989 .

[13]  C. E. Brion,et al.  Rydberg states of HCN observed by electron impact spectroscopy , 1974 .

[14]  S. Peyerimhoff,et al.  Ab initio CI study of the vibrational structure of the 1 1Σ− (1 1 A″)←X and 1 1Δ (2 1 A′, 2 1 A″)←X electronic transitions in HCN and DCN , 1988 .

[15]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[16]  J. Nuth,et al.  The vacuum ultraviolet spectra of HCN, C2N2, and CH3CN , 1982 .

[17]  S. Krishnamachari,et al.  A Transient Absorption Spectrum Attributable to the Triplet-Triplet Transition of HCN , 1984 .

[18]  S. Ridgway,et al.  Polyatomic species contributing to the carbon-star 3 micron band. , 1978 .

[19]  Massimo Olivucci,et al.  Ground and excited state CASPT2 geometry optimizations of small organic molecules , 2003, J. Comput. Chem..

[20]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[21]  S. Peyerimhoff,et al.  Abinitio calculation of the vibrational structure in the electronic spectra of HCN and DCN between 1700 and 2000 Å , 1977 .

[22]  G. Herzberg,et al.  ULTRAVIOLET ABSORPTION SPECTRA OF HCN AND DCN: I. THE α—X AND β—X SYSTEMS , 1957 .

[23]  G. Schwenzer,et al.  Confirmation of the discrepancy between theory and experiment for the B̃1A″ state of HCN , 1975 .

[24]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[25]  B. Ulich,et al.  Detection of methyl cyanide in Comet Kohoutek , 1974, Nature.

[26]  D. Buhl,et al.  Observations of Radio Emission from Interstellar Hydrogen Cyanide , 1971 .

[27]  R. Wilson,et al.  Detection of Millimeter Emission Lines from Interstellar Methyl Cyanide , 1971 .

[28]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.