On 3D DDFV Discretization of Gradient and Divergence Operators: Discrete Functional Analysis Tools and Applications to Degenerate Parabolic Problems

Abstract. We present a detailed survey of discrete functional analysis tools (consistency results, Poincaré and Sobolev embedding inequalities, discrete W1,p compactness, discrete compactness in space and in time) for the so-called Discrete Duality Finite Volume (DDFV) schemes in three space dimensions. We concentrate mainly on the 3D CeVe-DDFV scheme presented in [IMA J. Numer. Anal., 32 (2012), pp. 1574–1603]. Some of our results are new, such as a general time-compactness result based upon the idea of Kruzhkov (1969); others generalize the ideas known for the 2D DDFV schemes or for traditional two-point-flux finite volume schemes. We illustrate the use of these tools by studying convergence of discretizations of nonlinear elliptic-parabolic problems of Leray–Lions kind, and provide numerical results for this example.

[1]  Yves Coudière,et al.  Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations , 2001 .

[2]  Franck Boyer,et al.  On the finite-volume approximation of regular solutions of the $p$-Laplacian , 2006 .

[3]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[4]  Y. Coudière,et al.  Benchmark 3D: CeVe-DDFV, a Discrete Duality Scheme with Cell/Vertex Unknowns , 2011 .

[5]  F. Boyer,et al.  Non-overlapping Schwarz algorithm for solving 2 D m-DDFV schemes , 2008 .

[6]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[7]  P. Omnes,et al.  An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations , 2015 .

[8]  F. Hermeline,et al.  A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes , 2004 .

[9]  F. Hermeline Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .

[10]  Stella Krell,et al.  Study of Discrete Duality Finite Volume Schemes for the Peaceman Model , 2013, SIAM J. Sci. Comput..

[11]  Y. Coudière,et al.  Solving the Fully Coupled Heart and Torso Problems of ElectroCardiology with a 3D Discrete Duality Finite Volume Method , 2006 .

[12]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[14]  Kenneth H. Karlsen,et al.  Convergence of discrete duality finite volume schemes for the cardiac bidomain model , 2010, Networks Heterog. Media.

[15]  Franck Boyer,et al.  Besov regularity and new error estimates for finite volume approximations of the p-laplacian , 2005, Numerische Mathematik.

[16]  Thierry Gallouët,et al.  Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model , 2012 .

[17]  Pascal Omnes,et al.  A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..

[18]  K. Karlsen,et al.  A gradient reconstruction formula for finite volume schemes and discrete duality , 2008 .

[19]  Y. Coudière,et al.  A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .

[20]  Pascal Omnes,et al.  A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation , 2009, SIAM J. Numer. Anal..

[21]  Yves Coudi,et al.  DISCRETE SOBOLEV INEQUALITIES AND L p ERROR ESTIMATES FOR FINITE VOLUME SOLUTIONS OF CONVECTION DIFFUSION EQUATIONS , 2001 .

[22]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[23]  K. Krell,et al.  Schémas Volumes Finis en mécanique des fluides complexes , 2010 .

[24]  B. Andreianov,et al.  Convergence of approximate solutions to an elliptic–parabolic equation without the structure condition , 2011, Nonlinear Differential Equations and Applications NoDEA.

[25]  Raphaèle Herbin,et al.  Small-stencil 3D schemes for diffusive flows in porous media , 2012 .

[26]  Franck Boyer,et al.  Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..

[27]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[28]  Stella Krell Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes , 2011 .

[30]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[31]  B. Andreianov,et al.  Structural stability for variable exponent elliptic problems , 2009 .

[32]  S. N. Kruzhkov,et al.  Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .

[33]  B. Andreianov,et al.  Structural stability for variable exponent elliptic problems, II: The p(u)-Laplacian and coupled problems , 2010 .

[34]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[35]  Charles Pierre Modélisation et simulation de l'activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis , 2005 .

[36]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[37]  Francis Filbet,et al.  A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.

[38]  Long Chen FINITE VOLUME METHODS , 2011 .

[39]  Thierry Gallouët,et al.  A Finite Volume Scheme for a Noncoercive Elliptic Equation with Measure Data , 2003, SIAM J. Numer. Anal..

[40]  F. Filbet,et al.  On discrete functional inequalities for some finite volume schemes , 2012, 1202.4860.

[41]  Thierry Gallouët,et al.  APPROXIMATION BY THE FINITE VOLUME METHOD OF AN ELLIPTIC-PARABOLIC EQUATION ARISING IN ENVIRONMENTAL STUDIES , 2001 .

[42]  B. Andreianov,et al.  On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality. , 2012 .

[43]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[44]  Franck Boyer,et al.  Finite volume schemes for the p-Laplacian on Cartesian meshes , 2004 .

[45]  Robert Eymard,et al.  The finite volume method for Richards equation , 1999 .

[46]  Michael Gutnic,et al.  Convergence of Finite Volume Approximations for a Nonlinear Elliptic-Parabolic Problem: A "Continuous" Approach , 2004, SIAM J. Numer. Anal..

[47]  François Hermeline,et al.  Une méthode de volumes finis pour les équations elliptiques du second ordre , 1998 .

[48]  Y. Coudière,et al.  Development of DDFV Methods for the Euler Equations , 2011 .

[49]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[50]  Kenneth H. Karlsen,et al.  Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue , 2006, Networks Heterog. Media.

[51]  Annegret Glitzky,et al.  Discrete Sobolev-Poincaré Inequalities for Voronoi Finite Volume Approximations , 2010, SIAM J. Numer. Anal..

[52]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..

[53]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[54]  Francois Hermeline,et al.  A finite volume method for approximating 3D diffusion operators on general meshes , 2009, J. Comput. Phys..

[55]  F. Pascal,et al.  Discrete Duality Finite Volume Method Applied to Linear Elasticity , 2011 .

[56]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[57]  Boris Andreianov,et al.  Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs , 2011 .

[58]  Stella Krell,et al.  Benchmark 3D: a version of the DDFV scheme with cell/vertex unknowns on general meshes , 2011 .

[59]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[60]  Thierry Gallouët,et al.  Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids , 2009, J. Num. Math..

[61]  Yves Coudière,et al.  A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..

[62]  K. Karlsen,et al.  Convergence of a finite volume scheme for the bidomain model of cardiac tissue , 2009 .