Development of an adaptive infill criterion for constrained multi-objective asynchronous surrogate-based optimization
暂无分享,去创建一个
[1] Stephen J. Leary,et al. A parallel updating scheme for approximating and optimizing high fidelity computer simulations , 2004 .
[2] David Corne,et al. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[3] D. Ginsbourger,et al. Dealing with asynchronicity in parallel Gaussian Process based global optimization , 2010 .
[4] Lothar Thiele,et al. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.
[5] Peter J. Fleming,et al. Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.
[6] Peter J. Fleming,et al. On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.
[7] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[8] D.A. Van Veldhuizen,et al. On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[9] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[10] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[11] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[12] David E. Goldberg,et al. A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[13] Peter J. Fleming,et al. An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.
[14] David Ginsbourger,et al. Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection , 2013, LION.
[15] Rodolphe Le Riche,et al. Parallel Expected Improvements for Global Optimization: Summary, Bounds and Speed-up , 2011 .
[16] A. Osyczka,et al. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .
[17] Antanas Zilinskas,et al. A statistical model-based algorithm for ‘black-box’ multi-objective optimisation , 2014, Int. J. Syst. Sci..
[18] Tom Dhaene,et al. Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization , 2014, J. Glob. Optim..
[19] Кпсс,et al. Первая конференция военных и боевых организаций РСДРП. Ноябрь 1906 год , 1932 .
[20] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[21] Kern W. Dickman,et al. Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix , 1962 .
[22] Wolfgang Ponweiser,et al. On Expected-Improvement Criteria for Model-based Multi-objective Optimization , 2010, PPSN.
[23] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[24] Qingfu Zhang,et al. Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model , 2010, IEEE Transactions on Evolutionary Computation.
[25] Donald R. Jones,et al. Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.
[26] Andy J. Keane,et al. Multi-Objective Optimization Using Surrogates , 2010 .
[27] Shigeru Obayashi,et al. Efficient global optimization (EGO) for multi-objective problem and data mining , 2005, 2005 IEEE Congress on Evolutionary Computation.
[28] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[29] Wolfgang Ponweiser,et al. Clustered multiple generalized expected improvement: A novel infill sampling criterion for surrogate models , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[30] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[31] Nim Gould,et al. A Comprehensive Description of the Mathematical Algorithms Used in LANCELOT , 1992 .
[32] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[33] Antanas Zilinskas,et al. Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems , 2019, Optim. Lett..
[34] Benjamín Barán,et al. Performance metrics in multi-objective optimization , 2015, 2015 Latin American Computing Conference (CLEI).
[35] David Ginsbourger,et al. Differentiating the Multipoint Expected Improvement for Optimal Batch Design , 2015, MOD.
[36] M. Sasena,et al. Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization , 2002 .
[37] Andy J. Keane,et al. Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .
[38] James M. Parr,et al. Infill sampling criteria for surrogate-based optimization with constraint handling , 2012 .
[39] M. Emmerich,et al. The computation of the expected improvement in dominated hypervolume of Pareto front approximations , 2008 .
[40] James M. Calvin,et al. Bi-objective decision making in global optimization based on statistical models , 2019, J. Glob. Optim..
[41] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[42] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[43] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[44] David Ginsbourger,et al. Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges , 2012, LION.
[45] D. Ginsbourger,et al. Kriging is well-suited to parallelize optimization , 2010 .
[46] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[47] Marco Laumanns,et al. Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.
[48] Piet Demeester,et al. ooDACE toolbox: a flexible object-oriented Kriging implementation , 2014, J. Mach. Learn. Res..