Topographical organization of human corpus callosum: An fMRI mapping study

The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study, the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI data on the cortical representation of tactile, gustatory, and visual sensitivity and of motor activation, obtained in 36 volunteers. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (visual stimuli). These findings demonstrate that the functional topography of the CC can be explored with fMRI.

[1]  M S Gazzaniga,et al.  Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers. , 2000, Brain : a journal of neurology.

[2]  U Salvolini,et al.  Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. , 1999, AJNR. American journal of neuroradiology.

[3]  B. Wandell,et al.  Functional organization of human occipital-callosal fiber tracts. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Antonisamy,et al.  Quantitative analysis of the human corpus callosum under light microscopy , 2007 .

[5]  A. Snyder,et al.  Diffusion tensor imaging reveals white matter reorganization in early blind humans. , 2006, Cerebral cortex.

[6]  G. Berlucchi Some effects of cortical and callosal damage on conscious and unconscious processing of visual information and other sensory inputs. , 2004, Progress in brain research.

[7]  Peter Boesiger,et al.  Attention and Interhemispheric Transfer: A Behavioral and fMRI Study , 2005, Journal of Cognitive Neuroscience.

[8]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[9]  Ferath Kherif,et al.  Explaining Function with Anatomy: Language Lateralization and Corpus Callosum Size , 2008, The Journal of Neuroscience.

[10]  S. Aglioti,et al.  Taste laterality in the split brain , 2001, The European journal of neuroscience.

[11]  D. Perani,et al.  Interhemispheric transmission of visuomotor information in humans: fMRI evidence. , 2002, Journal of neurophysiology.

[12]  U. Salvolini,et al.  Bilateral cortical representation of the trunk midline in human first somatic sensory area , 2005, Human brain mapping.

[13]  D. Pandya,et al.  The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. , 1971, Brain research.

[14]  R. Meuli,et al.  Interhemispheric transfer of visual motion information after a posterior callosal lesion: a neuropsychological and fMRI study , 2000, Experimental Brain Research.

[15]  M. Moscovitch,et al.  Intermanual information transfer in patients with lesions in the trunk of the corpus callosum , 1984, Neuropsychologia.

[16]  D. Heeger,et al.  BOLD and spiking activity , 2008, Nature Neuroscience.

[17]  T. Gotow,et al.  Abnormal expression of neurofilament proteins in dysmyelinating axons located in the central nervous system of jimpy mutant mice , 1999, The European journal of neuroscience.

[18]  Rainer Goebel,et al.  Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single‐subject to cortically aligned group general linear model analysis and self‐organizing group independent component analysis , 2006, Human brain mapping.

[19]  K. Uğurbil,et al.  Functional magnetic resonance imaging of the human brain , 1997, Journal of Neuroscience Methods.

[20]  G. Geffen,et al.  The effect of lesions of the corpus callosum on finger localization , 1985, Neuropsychologia.

[21]  E. Ross,et al.  Topography of the Human Corpus Callosum , 1985, Journal of neuropathology and experimental neurology.

[22]  J. Villemure,et al.  Sensory and Motor Interhemispheric Integration after Section of Different Portions of the Anterior Corpus Callosum in Nonepileptic Patients , 2005, Neurosurgery.

[23]  V. Swayze,et al.  Two Hemispheres—One Brain: Functions of the Corpus Callosum , 1987 .

[24]  E. Mooshagian,et al.  Anatomy of the Corpus Callosum Reveals Its Function , 2008, The Journal of Neuroscience.

[25]  Stefan Pollmann,et al.  Dichotic listening in patients with splenial and nonsplenial callosal lesions. , 2002, Neuropsychology.

[26]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[27]  Angelo Quattrini,et al.  Posterior Corpus Callosum and Interhemispheric Transfer of Somatosensory Information: An fMRI and Neuropsychological Study of a Partially Callosotomized Patient , 2001, Journal of Cognitive Neuroscience.

[28]  Kenneth Hugdahl,et al.  Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. , 2009, Cerebral cortex.

[29]  F. Hyder,et al.  Inhibition of Voltage-Dependent Sodium Channels Suppresses the Functional Magnetic Resonance Imaging Response to Forepaw Somatosensory Activation in the Rodent , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  Chun-Hung Yeh,et al.  Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography , 2009, Human brain mapping.

[31]  J. Klein,et al.  Human Motor Corpus Callosum: Topography, Somatotopy, and Link between Microstructure and Function , 2007, The Journal of Neuroscience.

[32]  M S Gazzaniga,et al.  Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. , 2000, Archives of neurology.

[33]  Mark Jarmasz,et al.  Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging , 2006, Magnetic resonance in medicine.

[34]  M. Sugishita,et al.  Dichotic listening in patients with partial section of the corpus callosum. , 1995, Brain : a journal of neurology.

[35]  B. Meyer,et al.  Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. , 1995, Brain : a journal of neurology.

[36]  Andrea Tacchino,et al.  Callosal Contributions to Simultaneous Bimanual Finger Movements , 2008, The Journal of Neuroscience.

[37]  A. Rubens,et al.  Interhemispheric transfer in patients with incomplete section of the corpus callosum. Anatomic verification with magnetic resonance imaging. , 1989, Archives of neurology.

[38]  H S Levin,et al.  Effects of transcallosal surgery on interhemispheric transfer of information. , 1993, Surgical neurology.

[39]  E. Zaidel,et al.  Anatomical-behavioral relationships: Corpus callosum morphometry and hemispheric specialization , 1994, Behavioural Brain Research.

[40]  Giancarlo Tassinari,et al.  Incomplete Gustatory Lateralization as Shown by Analysis of Taste Discrimination After Callosotomy , 2000, Journal of Cognitive Neuroscience.

[41]  Heidi Johansen-Berg,et al.  Functional anatomy of interhemispheric cortical connections in the human brain , 2006, Journal of anatomy.

[42]  Gabriele Polonara,et al.  Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. , 2005, Brain research. Cognitive brain research.

[43]  M S Gazzaniga,et al.  Observations on visual processes after posterior callosal section , 1973, Neurology.

[44]  M. Gazzaniga,et al.  Cortical mechanisms involved in praxis , 1982, Neurology.

[45]  Marco Iacoboni,et al.  Visuo-motor integration and control in the human posterior parietal cortex: Evidence from TMS and fMRI , 2006, Neuropsychologia.

[46]  Osamu Abe,et al.  Topography of the Human Corpus Callosum Using Diffusion Tensor Tractography , 2004, Journal of computer assisted tomography.

[47]  K. Mosier,et al.  Parallel cortical networks for volitional control of swallowing in humans , 2001, Experimental Brain Research.

[48]  F. Hyder,et al.  Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Pierre J. Magistretti,et al.  Brain energy metabolism , 2013 .

[50]  Jens Frahm,et al.  Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. , 2008, Cerebral cortex.

[51]  E C Wong,et al.  Effect of motion outside the field of view on functional MR. , 1996, AJNR. American journal of neuroradiology.

[52]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[53]  D. Geschwind,et al.  Alien hand syndrome , 1995, Neurology.

[54]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[55]  D. Rossi,et al.  Another BOLD role for astrocytes: coupling blood flow to neural activity , 2006, Nature Neuroscience.

[56]  D. Harder,et al.  Role of astrocytes in matching blood flow to neuronal activity. , 2007, Current topics in developmental biology.

[57]  Ryan C. N. D'Arcy,et al.  Confirming white matter fMRI activation in the corpus callosum: Co-localization with DTI tractography , 2010, NeuroImage.

[58]  Ryan C. N. D'Arcy,et al.  Optimizing the detection of white matter fMRI using asymmetric spin echo spiral , 2009, NeuroImage.

[59]  Hao Huang,et al.  DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum , 2005, NeuroImage.

[60]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[61]  R. Sperry,et al.  Absence of deconnexion syndrome in two patients with partial section of the neocommissures. , 1971, Brain : a journal of neurology.

[62]  M. Gazzaniga Forty-five years of split-brain research and still going strong , 2005, Nature Reviews Neuroscience.

[63]  Joseph E LeDoux,et al.  Indelibility of Subcortical Emotional Memories , 1989, Journal of Cognitive Neuroscience.

[64]  U Salvolini,et al.  Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients , 1999, The European journal of neuroscience.

[65]  Rumyana Kristeva-Feige,et al.  Lateralization of movement‐related potentials and the size of corpus callosum , 2000, Neuroreport.

[66]  Manabu Minami,et al.  Different mechanisms involved in interhemispheric transfer of visuomotor information , 2004, Neuroreport.