Camera Autocalibration and Horopter Curves

We describe a new algorithm for the obtainment of the affine and Euclidean calibration of a camera under general motion. The algorithm exploits the relationships of the horopter curves associated to each pair of cameras with the plane at infinity and the absolute conic. Using these properties we define cost functions whose minimization by means of general purpose techniques provides the required calibration. The experiments show the good convergence properties, computational efficiency and robust performance of the new techniques.

[1]  Andrew Zisserman,et al.  Self-Calibration from Image Triplets , 1996, ECCV.

[2]  Bernd Jähne Reconstruction from Projections , 1991 .

[3]  Ian D. Reid,et al.  Camera calibration and the search for infinity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  Bill Triggs,et al.  Autocalibration and the absolute quadric , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[6]  David Nistér Calibration with robust use of cheirality by quasi-affine reconstruction of the set of camera projection centres , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Olivier D. Faugeras,et al.  A theory of self-calibration of a moving camera , 1992, International Journal of Computer Vision.

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  Luc Van Gool,et al.  Stratified Self-Calibration with the Modulus Constraint , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[11]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[12]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[13]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[14]  Anders Heyden,et al.  Auto-calibration from the orthogonality constraints , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[15]  Richard I. Hartley,et al.  Projective Reconstruction and Invariants from Multiple Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  S. Maybank The projective geometry of ambiguous surfaces , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[18]  Andrea Fusiello,et al.  Uncalibrated Euclidean reconstruction: a review , 2000, Image Vis. Comput..

[19]  Frederik Schaffalitzky,et al.  Direct Solution of Modulus Constraints , 2000 .

[20]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .