Optimum commutative group codes
暂无分享,去创建一个
Rogério M. Siqueira | Sueli I. Rodrigues Costa | João Strapasson | Cristiano Torezzan | S. Costa | Cristiano Torezzan | J. Strapasson | R. M. Siqueira
[1] Sandro Zampieri,et al. Minimal and systematic convolutional codes over finite Abelian groups , 2004 .
[2] Ian F. Blake,et al. On the trellis complexity of root lattices and their duals , 1999, IEEE Trans. Inf. Theory.
[3] Dariush Divsalar,et al. Labelings and encoders with the uniform bit error property with applications to serially concatenated trellis codes , 2002, IEEE Trans. Inf. Theory.
[4] R. Zamir. Lattices are everywhere , 2009, 2009 Information Theory and Applications Workshop.
[5] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[6] Federica Garin,et al. Analysis of Serial Turbo Codes over Abelian Groups for Symmetric Channels , 2008, SIAM J. Discret. Math..
[7] Sueli I. R. Costa,et al. Circulant graphs and tessellations on flat tori , 2010 .
[8] E. Biglieri,et al. Cyclic-group codes for the Gaussian channel , 1976 .
[9] Richard Lindner,et al. Explicit Hard Instances of the Shortest Vector Problem , 2008, PQCrypto.
[10] Rogério M. Siqueira,et al. Flat tori, lattices and bounds for commutative group codes , 2008, Des. Codes Cryptogr..
[11] Hans-Andrea Loeliger,et al. Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.
[12] I. Blake,et al. Group Codes for the Gaussian Channel , 1975 .
[13] Uri Erez,et al. The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.
[14] Andrew J. Viterbi,et al. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.
[15] Sueli I. Rodrigues Costa,et al. Spherical codes on torus layers , 2009, 2009 IEEE International Symposium on Information Theory.
[16] Sandro Zampieri,et al. Minimal Syndrome Formers for Group Codes , 1999, IEEE Trans. Inf. Theory.
[17] Sanjeeb Dash,et al. On Nearly Orthogonal Lattice Bases and Random Lattices , 2007, SIAM J. Discret. Math..
[18] Shafi Goldwasser,et al. Complexity of lattice problems , 2002 .
[19] Giuseppe Caire,et al. Linear block codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.
[20] Ian F. Blake,et al. Trellis Complexity and Minimal Trellis Diagrams of Lattices , 1998, IEEE Trans. Inf. Theory.
[21] F. R. Gantmakher. The Theory of Matrices , 1984 .
[22] Giacomo Como,et al. Average Spectra and Minimum Distances of Low-Density Parity-Check Codes over Abelian Groups , 2008, SIAM J. Discret. Math..
[23] Tanja Lange,et al. Post-quantum cryptography , 2008, Nature.
[24] David S. Slepian. On neighbor distances and symmetry in group codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.
[25] V. Zinoviev,et al. Codes on euclidean spheres , 2001 .
[26] Ezio Biglieri,et al. Cyclic-group codes for the Gaussian channel (Corresp.) , 1976, IEEE Trans. Inf. Theory.
[27] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[28] Giacomo Como,et al. The capacity of Abelian group codes over symmetric channels , 2005 .
[29] Jyrki T. Lahtonen,et al. Group codes generated by finite reflection groups , 1996, IEEE Trans. Inf. Theory.
[30] Shafi Goldwasser,et al. Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.
[31] Giacomo Como,et al. The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels , 2009, IEEE Transactions on Information Theory.
[32] Thomas E. Fuja,et al. LDPC codes over rings for PSK modulation , 2005, IEEE Transactions on Information Theory.
[33] Roberto Garello,et al. Geometrically uniform partitions of L×MPSK constellations and related binary trellis codes , 1993, IEEE Trans. Inf. Theory.
[34] Ingemar Ingemarsson,et al. Group Codes for the Gaussian Channel , 1989 .
[35] Peter Lancaster,et al. The theory of matrices , 1969 .
[36] J.-M. Goethals,et al. IEEE international symposium on information theory , 1981 .
[37] G. David Forney,et al. Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.
[38] Mitchell D. Trott,et al. The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.
[39] Vahid Tarokh,et al. On the Trellis Complexity of the Densest Lattice Packings in Rn , 1996, SIAM J. Discret. Math..
[40] Mitchell D. Trott,et al. The dynamics of group codes: Dual abelian group codes and systems , 2004, IEEE Transactions on Information Theory.