Optimum commutative group codes

A method for finding an optimum $$n$$n-dimensional commutative group code of a given order $$M$$M is presented. The approach explores the structure of lattices related to these codes and provides a significant reduction in the number of non-isometric cases to be analyzed. The classical factorization of matrices into Hermite and Smith normal forms and also basis reduction of lattices are used to characterize isometric commutative group codes. Several examples of optimum commutative group codes are also presented.

[1]  Sandro Zampieri,et al.  Minimal and systematic convolutional codes over finite Abelian groups , 2004 .

[2]  Ian F. Blake,et al.  On the trellis complexity of root lattices and their duals , 1999, IEEE Trans. Inf. Theory.

[3]  Dariush Divsalar,et al.  Labelings and encoders with the uniform bit error property with applications to serially concatenated trellis codes , 2002, IEEE Trans. Inf. Theory.

[4]  R. Zamir Lattices are everywhere , 2009, 2009 Information Theory and Applications Workshop.

[5]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[6]  Federica Garin,et al.  Analysis of Serial Turbo Codes over Abelian Groups for Symmetric Channels , 2008, SIAM J. Discret. Math..

[7]  Sueli I. R. Costa,et al.  Circulant graphs and tessellations on flat tori , 2010 .

[8]  E. Biglieri,et al.  Cyclic-group codes for the Gaussian channel , 1976 .

[9]  Richard Lindner,et al.  Explicit Hard Instances of the Shortest Vector Problem , 2008, PQCrypto.

[10]  Rogério M. Siqueira,et al.  Flat tori, lattices and bounds for commutative group codes , 2008, Des. Codes Cryptogr..

[11]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[12]  I. Blake,et al.  Group Codes for the Gaussian Channel , 1975 .

[13]  Uri Erez,et al.  The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.

[14]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[15]  Sueli I. Rodrigues Costa,et al.  Spherical codes on torus layers , 2009, 2009 IEEE International Symposium on Information Theory.

[16]  Sandro Zampieri,et al.  Minimal Syndrome Formers for Group Codes , 1999, IEEE Trans. Inf. Theory.

[17]  Sanjeeb Dash,et al.  On Nearly Orthogonal Lattice Bases and Random Lattices , 2007, SIAM J. Discret. Math..

[18]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[19]  Giuseppe Caire,et al.  Linear block codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.

[20]  Ian F. Blake,et al.  Trellis Complexity and Minimal Trellis Diagrams of Lattices , 1998, IEEE Trans. Inf. Theory.

[21]  F. R. Gantmakher The Theory of Matrices , 1984 .

[22]  Giacomo Como,et al.  Average Spectra and Minimum Distances of Low-Density Parity-Check Codes over Abelian Groups , 2008, SIAM J. Discret. Math..

[23]  Tanja Lange,et al.  Post-quantum cryptography , 2008, Nature.

[24]  David S. Slepian On neighbor distances and symmetry in group codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[25]  V. Zinoviev,et al.  Codes on euclidean spheres , 2001 .

[26]  Ezio Biglieri,et al.  Cyclic-group codes for the Gaussian channel (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[27]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[28]  Giacomo Como,et al.  The capacity of Abelian group codes over symmetric channels , 2005 .

[29]  Jyrki T. Lahtonen,et al.  Group codes generated by finite reflection groups , 1996, IEEE Trans. Inf. Theory.

[30]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[31]  Giacomo Como,et al.  The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels , 2009, IEEE Transactions on Information Theory.

[32]  Thomas E. Fuja,et al.  LDPC codes over rings for PSK modulation , 2005, IEEE Transactions on Information Theory.

[33]  Roberto Garello,et al.  Geometrically uniform partitions of L×MPSK constellations and related binary trellis codes , 1993, IEEE Trans. Inf. Theory.

[34]  Ingemar Ingemarsson,et al.  Group Codes for the Gaussian Channel , 1989 .

[35]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[36]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[37]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[38]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[39]  Vahid Tarokh,et al.  On the Trellis Complexity of the Densest Lattice Packings in Rn , 1996, SIAM J. Discret. Math..

[40]  Mitchell D. Trott,et al.  The dynamics of group codes: Dual abelian group codes and systems , 2004, IEEE Transactions on Information Theory.