Vorticella: A Protozoan for Bio-Inspired Engineering

In this review, we introduce Vorticella as a model biological micromachine for microscale engineering systems. Vorticella has two motile organelles: the oral cilia of the zooid and the contractile spasmoneme in the stalk. The oral cilia beat periodically, generating a water flow that translates food particles toward the animal at speeds in the order of 0.1–1 mm/s. The ciliary flow of Vorticella has been characterized by experimental measurement and theoretical modeling, and tested for flow control and mixing in microfluidic systems. The spasmoneme contracts in a few milliseconds, coiling the stalk and moving the zooid at 15–90 mm/s. Because the spasmoneme generates tension in the order of 10–100 nN, powered by calcium ion binding, it serves as a model system for biomimetic actuators in microscale engineering systems. The spasmonemal contraction of Vorticella has been characterized by experimental measurement of its dynamics and energetics, and both live and extracted Vorticellae have been tested for moving microscale objects. We describe past work to elucidate the contraction mechanism of the spasmoneme, recognizing that past and continuing efforts will increase the possibilities of using the spasmoneme as a microscale actuator as well as leading towards bioinspired actuators mimicking the spasmoneme.

[1]  P. Matsudaira,et al.  Unsteady motion, finite Reynolds numbers, and wall effect on Vorticella convallaria contribute contraction force greater than the stokes drag. , 2010, Biophysical journal.

[2]  Sylvain Martel,et al.  Bacterial microsystems and microrobots , 2012, Biomedical Microdevices.

[3]  Rachel E. Pepper,et al.  A new angle on microscopic suspension feeders near boundaries. , 2013, Biophysical journal.

[4]  Liang Dong,et al.  Variable‐Focus Liquid Microlenses and Microlens Arrays Actuated by Thermoresponsive Hydrogels , 2007 .

[5]  James H Marden,et al.  Molecules, muscles, and machines: Universal performance characteristics of motors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Roger L. Williams,et al.  Structural role of Sfi1p–centrin filaments in budding yeast spindle pole body duplication , 2006, The Journal of cell biology.

[7]  Denis Bartolo,et al.  Collective beating of artificial microcilia. , 2011, Physical review letters.

[8]  Measurement of mechanical forces generated by plant P-protein aggregates (forisomes) , 2009, European Biophysics Journal.

[9]  John R. Blake,et al.  Existence of viscous eddies near boundaries , 1981, Journal of Fluid Mechanics.

[10]  H. Asai,et al.  Spasmin and a Putative Spasmin Binding Protein(s) Isolated from Solubilized Spasmonemes 1 , 1998 .

[11]  Enhanced efficiency of feeding and mixing due to chaotic flow patterns around choanoflagellates. , 2000, IMA journal of mathematics applied in medicine and biology.

[12]  Jonathan Rossiter,et al.  Kirigami artificial muscles with complex biologically inspired morphologies , 2012 .

[13]  Stephen C. Lee,et al.  Biochemistry of Mechanoenzymes: Biological Motors for Nanotechnology , 2003 .

[14]  Habituation in a protozoan Vorticella convallaria. , 1973, Behaviour.

[15]  Christopher E. Brennen,et al.  Fluid Mechanics of Propulsion by Cilia and Flagella , 1977 .

[16]  Robin H. Liu,et al.  Fabrication and characterization of hydrogel-based microvalves , 2002 .

[17]  S. Otto,et al.  Ciliary propulsion, chaotic filtration and a ‘blinking’ stokeslet , 1996 .

[18]  Paul Matsudaira,et al.  Maximal force characteristics of the Ca(2+)-powered actuator of Vorticella convallaria. , 2012, Biophysical journal.

[19]  Susan K. Kendall,et al.  Encyclopedia of Life Sciences , 2012 .

[20]  H Okamoto,et al.  Rubber-like elasticity and volume changes in the isolated spasmoneme of giant Zoothamnium sp. under Ca2+-induced contraction. , 1999, Biophysical journal.

[21]  I. Hunter,et al.  A comparison of muscle with artificial actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[22]  H. Asai,et al.  Contractility of the spasmoneme in glycerinated Vorticella stalk induced by various divalent metal and lanthanide ions , 1987 .

[23]  L. Mahadevan,et al.  Motility powered by supramolecular springs and ratchets. , 2000, Science.

[24]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[25]  H. Asai,et al.  Characterization of the spasmin 1 gene in Zoothamnium arbuscula strain Kawagoe (protozoa, ciliophora) and its relation to other spasmins and centrins. , 2003, Research in microbiology.

[26]  K. Takahashi Cilia and flagella. , 1984, Cell structure and function.

[27]  M. Vilfan,et al.  Measurement of fluid flow generated by artificial cilia. , 2011, Biomicrofluidics.

[28]  George J. Pappas,et al.  Electrokinetic and optical control of bacterial microrobots , 2011 .

[29]  H. Fujita,et al.  Binding of Artificial Object to Vorticella for a Microsystem Powered by a Microorganism , 2009 .

[30]  W. Amos,et al.  Reversible Mechanochemical Cycle in the Contraction of Vorticella , 1971, Nature.

[31]  Hiroyuki Fujita,et al.  Chemical control of Vorticella bioactuator using microfluidics. , 2010, Lab on a chip.

[32]  J. Salisbury Centrosomes: Sfi1p and Centrin Unravel a Structural Riddle , 2004, Current Biology.

[33]  Rachel E. Pepper,et al.  Nearby boundaries create eddies near microscopic filter feeders , 2010, Journal of The Royal Society Interface.

[34]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[35]  A. Delgado,et al.  Analysis of the flow field induced by the sessile peritrichous ciliate Opercularia asymmetrica. , 2007, Journal of biomechanics.

[36]  H. E. Buhse,et al.  Morphogenetic Transitions and Cytoskeletal Elements of the Stalked Zooid and the Telotroch Stages in the Peritrich Ciliate Vorticella convallaria , 1992 .

[37]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[38]  W. Amos,et al.  Calcium-binding proteins in a vorticellid contractile organelle. , 1975, Journal of cell science.

[39]  M. Vilfan,et al.  Self-assembled artificial cilia , 2010, Proceedings of the National Academy of Sciences.

[40]  Metin Sitti,et al.  Bio-hybrid cell-based actuators for microsystems. , 2014, Small.

[41]  M. Kikuyama,et al.  AN ALL-OR-NOTHING RISE IN CYTOSOLIC [Ca2+] IN VORTICELLA SP , 1996 .

[42]  T. Kawashima,et al.  Microfluidic cellular valve powerd by linear bioactuator , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[43]  Amy Q. Shen,et al.  Forisome Based Biomimetic Smart Materials , 2006 .

[44]  R. Allen STRUCTURES LINKING THE MYONEMES, ENDOPLASMIC RETICULUM, AND SURFACE MEMBRANES IN THE CONTRACTILE CILIATE VORTICELLA , 1973, The Journal of cell biology.

[45]  H Asai,et al.  Improved preparation and cooperative calcium contraction of glycerinated Vorticella. , 1978, Journal of biochemistry.

[46]  P. Rudland,et al.  Stem cells in mammary gland differentiation and cancer , 1988, Journal of Cell Science.

[47]  H. E. Buhse,et al.  A Method for the Synchronous Induction of Large Numbers of Telotrochs in Vorticella convallaria by Monocalcium Phosphate at Low pH , 1999 .

[48]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[49]  J. Westerweel,et al.  Magnetically-actuated artificial cilia for microfluidic propulsion , 2009, 0901.3687.

[50]  Min Jun Kim,et al.  Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse , 2009 .

[51]  Kinam Park,et al.  Natural Polymer Gels with Fast Responses , 2004 .

[52]  A Apolinar-Iribe,et al.  Measurement of Vorticella Contraction Force Using a Micropipette Technique , 2010 .

[53]  Takehiko Kitamori,et al.  Biological cells on microchips: new technologies and applications. , 2007, Biosensors & bioelectronics.

[54]  Routledge Lm Calcium-binding proteins in the vorticellid spasmoneme. , 1978 .

[55]  M. Bramucci,et al.  Inhibition of Vorticella microstoma Stalk Formation by Wheat Germ Agglutinin , 2004, The Journal of eukaryotic microbiology.

[56]  W. Amos,et al.  ELECTRICAL RECORDING FROM THE CONTRACTILE CILIATE ZOOTHAMNIUM GENICULATUM AYRTON , 1979 .

[57]  W. Huck Responsive polymers for nanoscale actuation , 2008 .

[58]  Rachel E. Pepper,et al.  Cooperatively generated stresslet flows supply fresh fluid to multicellular choanoflagellate colonies. , 2013, Physical review letters.

[59]  M. Sleigh,et al.  COLLECTION OF FOOD BY VORTICELLA1 , 1976 .

[60]  Tiago J Dantas,et al.  Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance , 2012, Cellular and Molecular Life Sciences.

[61]  S. Devasia,et al.  Characterization of mixing performance for bio-mimetic silicone cilia , 2010 .

[62]  Liang Dong,et al.  Autonomous microfluidics with stimuli-responsive hydrogels. , 2007, Soft matter.

[63]  Min Jun Kim,et al.  Microfluidic pump powered by self-organizing bacteria. , 2008, Small.

[64]  S. Otto,et al.  Filter Feeding, Chaotic Filtration, and a Blinking Stokeslet , 1998 .

[65]  H. Asai,et al.  Ca(2+)-induced tension development in the stalks of glycerinated Vorticella convallaria. , 1996, Cell motility and the cytoskeleton.

[66]  Cynthia Y. He,et al.  Centrins in unicellular organisms: functional diversity and specialization , 2011, Protoplasma.

[67]  M. Bornens,et al.  In search of a function for centrins. , 1995, Trends in cell biology.

[68]  Santosh Devasia,et al.  Bio-mimetic silicone cilia for microfluidic manipulation. , 2009, Lab on a chip.

[69]  H. Asada,et al.  Utilization and control of bioactuators across multiple length scales. , 2014, Lab on a chip.

[70]  G. Yarrington Molecular Cell Biology , 1987, The Yale Journal of Biology and Medicine.

[71]  J. Randall,et al.  On the stalks of certain peritrichs , 1962, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[72]  Katoh,et al.  An all-or-nothing rise in cytosolic , 1997, The Journal of experimental biology.

[73]  Takayuki Shibata,et al.  Mixing of solutions by coordinated ciliary motion in Vorticella convallaria and patterning method for microfluidic applications , 2013 .

[74]  H. Asai,et al.  Circular dichroism studies of the Ca2+-binding proteins from the spasmoneme of Carchesium , 1985 .

[75]  Takayuki Shibata,et al.  A Microfluidic Flow-switching Device Powered by Vorticella Stalk , 2013 .

[76]  Min Jun Kim,et al.  Use of bacterial carpets to enhance mixing in microfluidic systems , 2007 .

[77]  H. Hoffmann-Berling,et al.  Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen Kontraktionszyklus , 1958 .

[78]  R. Superfine,et al.  Biomimetic cilia arrays generate simultaneous pumping and mixing regimes , 2010, Proceedings of the National Academy of Sciences.

[79]  Dick Broer,et al.  Artificial cilia for active micro-fluidic mixing. , 2008, Lab on a chip.

[80]  Edward E. Ruppert,et al.  Invertebrate Zoology: A Functional Evolutionary Approach , 1974 .

[81]  R. Allen,et al.  Contractility and its control in peritrich ciliates. , 1973, The Journal of protozoology.

[82]  Akitoshi Itoh Motion control of protozoa for bio MEMS , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[83]  Masatoshi Ishikawa,et al.  Microrobotic visual control of motile cells using high-speed tracking system , 2005, IEEE Transactions on Robotics.

[84]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[85]  Hiroyuki Fujita,et al.  Three-dimensional two-component velocity measurement of the flow field induced by the Vorticella picta microorganism using a confocal microparticle image velocimetry technique. , 2009, Biomicrofluidics.

[86]  J. Kilmartin Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication , 2003, The Journal of cell biology.

[87]  S. Otto,et al.  Transport and mixing in Stokes flow: the effect of chaotic dynamics on the blinking stokeslet , 2001, Journal of Fluid Mechanics.

[88]  A MECHANOSENSORY MECHANISM FOR EVOKING CELLULAR CONTRACTION IN VORTICELLA , 1992 .

[89]  J. Westerweel,et al.  Experimental investigation of the flow induced by artificial cilia. , 2011, Lab on a chip.

[90]  Zenji Yatabe,et al.  Contraction behaviors of Vorticella sp. stalk investigated using high-speed video camera. I: Nucleation and growth model , 2012, Biophysics.

[91]  G. Gigli,et al.  Smart Microfluidics: The Role of Stimuli- Responsive Polymers in Microfluidic Devices , 2012 .

[92]  J F V Vincent Smart by name, smart by nature , 2000 .

[93]  Jeffrey S. Guasto,et al.  Fluid Mechanics of Planktonic Microorganisms , 2012 .

[94]  Linda Sperling,et al.  An Sfi1p-Like Centrin-Binding Protein Mediates Centrin-Based Ca2+-Dependent Contractility in Paramecium tetraurelia , 2007, Eukaryotic Cell.

[95]  Hiroyuki Fujita,et al.  Reciprocation of micro-objects by contraction and extension of Vorticella convallaria using polylysine as adhesive material , 2014 .

[96]  R. Twyman,et al.  Native and artificial forisomes: functions and applications , 2011, Applied Microbiology and Biotechnology.

[97]  S. Otto,et al.  Modelling the motion of particles around choanoflagellates , 2003, Journal of Fluid Mechanics.

[98]  Jaap M J den Toonder,et al.  Microfluidic manipulation with artificial/bioinspired cilia. , 2013, Trends in biotechnology.

[99]  R. Hawkes,et al.  Contraction and volume reduction of the glycerolatedCarchesium spasmoneme: Effects of alkali earth cations , 1976, Experientia.

[100]  Z. Dogic,et al.  Cilia-Like Beating of Active Microtubule Bundles , 2011, Science.

[101]  P. Nott,et al.  The Fluid Dynamics of Swimming Microorganisms and Cells , 2012 .

[102]  H. Berg,et al.  Moving fluid with bacterial carpets. , 2004, Biophysical journal.

[103]  B. Bomfleur,et al.  Triassic leech cocoon from Antarctica contains fossil bell animal , 2012, Proceedings of the National Academy of Sciences.

[104]  T. Jahn,et al.  Contraction of protoplasm. III. Cinematographic analysis of the contraction of some heterotrichs , 1970 .

[105]  Adam W Feinberg,et al.  Biological Soft Robotics. , 2015, Annual review of biomedical engineering.

[106]  Jaap den Toonder,et al.  Inertial flow effects in a micro-mixer based on artificial cilia. , 2009, Lab on a chip.

[107]  M. Knoblauch,et al.  Biomimetic actuators: where technology and cell biology merge , 2004, Cellular and Molecular Life Sciences CMLS.

[108]  Jie Fang,et al.  Chemical modification of contractile 3-nm-diameter filaments in Vorticella spasmoneme by diethyl-pyrocarbonate and its reversible renaturation by hydroxylamine. , 2003, Biochemical and biophysical research communications.

[109]  J. Blake,et al.  The hydrodynamics of filter feeding in choanoflagellates , 2002 .

[110]  T. Müller,et al.  ATP-independent contractile proteins from plants , 2003, Nature materials.

[111]  Antoni van Leeuwenhoek,et al.  Antony Van Leeuwenhoek and His 'Little Animals' , 1932, The Indian Medical Gazette.

[112]  S. Mochón,et al.  Stokes flow for a stokeslet between two parallel flat plates , 1976 .

[113]  Narendra Tuteja,et al.  Forisomes: calcium-powered protein complexes with potential as 'smart' biomaterials. , 2010, Trends in biotechnology.

[114]  Winfried S Peters,et al.  Forisomes, a novel type of Ca(2+)-dependent contractile protein motor. , 2004, Cell motility and the cytoskeleton.

[115]  D. Brown,et al.  The involvement of pH, adenosine triphosphate, calcium, and magnesium in the contraction of the glycerinated stalks of Vorticella. , 1965, Journal of cellular physiology.

[116]  J. Rospars,et al.  Force per cross-sectional area from molecules to muscles: a general property of biological motors , 2016, Royal Society Open Science.

[117]  R. McCord,et al.  Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii. , 2005, Cell motility and the cytoskeleton.

[118]  Zenji Yatabe,et al.  Contraction behaviors of Vorticella sp. stalk investigated using high-speed video camera. II: Viscosity effect of several types of polymer additives , 2012, Biophysics.

[119]  H. E. Buhse Vorticella: “A Cell For All Seasons” 1 , 1998 .

[120]  L Mahadevan,et al.  Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring. , 2008, Biophysical journal.

[121]  Amos Wb Contraction and calcium binding in the vorticellid ciliates. , 1975 .

[122]  S. Vogel,et al.  Life in Moving Fluids , 2020 .

[123]  A. V. van Bel,et al.  Reversible Calcium-Regulated Stopcocks in Legume Sieve Tubes , 2001, Plant Cell.

[124]  S. Schwan,et al.  Micromechanical measurements on P-protein aggregates (forisomes) from Vicia faba plants. , 2009, Biophysical chemistry.

[125]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[126]  H. Asai,et al.  High-speed video cinematographic demonstration of stalk and zooid contraction of Vorticella convallaria. , 1998, Biophysical journal.

[127]  Takayuki Shibata,et al.  Reversible motion control of Vorticella stalk in microchannel , 2013 .

[128]  C. Brazel Reflexive Polymers and Hydrogels: Understanding and Designing Fast Responsive Polymeric Systems , 2005 .

[129]  M. Prins,et al.  Micro-fluidic actuation using magnetic artificial cilia. , 2009, Lab on a chip.

[130]  Jin-Woo Kim,et al.  Microscale hybrid devices powered by biological flagellar motors , 2006, IEEE Transactions on Automation Science and Engineering.

[131]  H. Asai,et al.  Partial purification of the Ca2+-binding proteins from the spasmoneme of Carchesium , 1985 .

[132]  C. Reick,et al.  Flow microenvironment of two marine peritrich ciliates with ectobiotic chemoautotrophic bacteria , 2002 .

[133]  G. Aldis,et al.  Flow patterns around ciliated microorganisms and in ciliated ducts. , 1982, Journal of theoretical biology.

[134]  W. Amos Structure and coiling of the stalk in the peritrich ciliates Vorticella and Carchesium. , 1972, Journal of cell science.

[135]  N. Liron Fluid transport by cilia between parallel plates , 1978, Journal of Fluid Mechanics.

[136]  H. Asai,et al.  Spasmin-like proteins in various ciliates revealed by antibody to purified spasmins ofCarchesium polypinum , 1988, Experientia.

[137]  G. Whitesides,et al.  Microoxen: microorganisms to move microscale loads. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[138]  M. Rahat,et al.  Colchicine inhibition of stalk elongation in Carchesium sp.: effect of Ca2+ and Mg2+. , 1975, Journal of cell science.

[139]  T. Weis-Fogh,et al.  Evidence for a New Mechanism of Cell Motility , 1972, Nature.

[140]  S. Schwan,et al.  In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). , 2007, Biophysical chemistry.

[141]  James H Marden,et al.  Scaling of maximum net force output by motors used for locomotion , 2005, Journal of Experimental Biology.