Surrogate based optimization of a process of polycrystalline silicon production

Abstract A hybrid polycrystalline silicon production route is optimized following a two-step procedure. First, surrogate models for the main units are developed following different techniques which depend on the available information. Secondly, the optimization of the entire process flowsheet allows determining the optimal tradeoff between yield and energy consumption. A base production capacity of 2000 t/y of polycrystalline silicon is considered, with an equipment cost of 9.97 M$. Three scenarios are evaluated: maximum silicon production, minimum operating costs and maximum total profit. The maximization of the total profit is the most promising scenario, obtaining a selling price of 8.93 $/kgPoly, below the commercial price, 10 $/kgPoly. The revenue obtained is 10 M$/y, with an operating cost of 6.48 M$/y. Furthermore, a plant scale-up study was performed. If the production capacity is increased by a factor of 10, it results in a reduction of 1.03 $/kgSiPoly.

[1]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[2]  Nelly Ramírez-Corona,et al.  Dynamic behavior of a multi-tasking reactive distillation column for production of silane, dichlorosilane and monochlorosilane , 2016 .

[3]  Antonio Luque,et al.  Chemical Vapor Deposition Model of Polysilicon in a Trichlorosilane and Hydrogen System , 2008 .

[4]  M. P. Jain,et al.  Studies on Hydrochlorination of Silicon in a Fixed Bed Reactor , 2010 .

[5]  Tiefeng Wang,et al.  Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor , 2013 .

[6]  María Jesús Recamán Payo Purificación de triclorosilano por destilación en el proceso de obtención de silicio de grado solar , 2011 .

[7]  Fidelis Chigondo,et al.  From Metallurgical-Grade to Solar-Grade Silicon: An Overview , 2018, Silicon.

[8]  C. del Cañizo,et al.  Deposition reactors for solar grade silicon: a comparative thermal analysis of a Siemens reactor and a fluidized bed reactor , 2015 .

[9]  Bruno Ceccaroli,et al.  Solar Grade Silicon Feedstock , 2011 .

[10]  K. Kato,et al.  Bubble assemblage model for fluidized bed catalytic reactors , 1969 .

[11]  José Costa López,et al.  Diseño de procesos en ingeniería química , 2003 .

[12]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[13]  D. S. Strebkov,et al.  New Method of Solar Grade Silicon Production , 2002 .

[14]  Wei-Jie Ding,et al.  Hydrogenation of Silicon Tetrachloride in the Presence of Silicon: Thermodynamic and Experimental Investigation , 2014 .

[15]  Pauline M. Doran Chapter 5 – Energy Balances , 2013 .

[16]  Juan Gabriel Segovia-Hernández,et al.  Process design and intensification for the production of solar grade silicon , 2018 .

[17]  N MarianoMartNMart,et al.  Industrial Chemical Process Analysis and Design , 2016 .

[18]  Chandra Veer Singh,et al.  Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling , 2017 .

[19]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[20]  E. Dornberger,et al.  Status and Development of Solar-Grade Silicon Feedstock , 2009 .

[21]  Francisco José Pena Brage Contribución al modelado matemático de algunos problemas en la metalurgia del silicio , 2003 .

[22]  L. P. Hunt,et al.  Handbook of Semiconductor Silicon Technology , 2007 .

[23]  Wolfgang R. Huster,et al.  Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks , 2019, Comput. Chem. Eng..

[24]  Caixia Chen,et al.  Modeling and simulation of silicon epitaxial growth in Siemens CVD reactor , 2014 .

[25]  Selen Cremaschi,et al.  Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models , 2012, Comput. Chem. Eng..

[26]  Georg Ronge,et al.  Development and Economic Evaluation of a Reactive Distillation Process for Silane Production , 2022 .

[27]  Chien M. Wai,et al.  Free energy minimization calculation of complex chemical equilibria: Reduction of silicon dioxide with carbon at high temperature , 1989 .

[28]  James R. Fair Chemical Process Equipment: Selection and Design , 2005 .

[29]  Carlos del Cañizo Nadal,et al.  Chemical Vapor Deposition Model of Polysilicon in a Trichlorosilane and Hydrogen System , 2008 .

[30]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[31]  Akio Fuwa,et al.  Hydrogenation Reactions and Their Kinetics for SiCl 4 (g)–H 2 (g) and SiCl 4 (g)–Si(s)–H 2 (g) Systems Using a Fixed Bed Type Reactor , 1992 .

[32]  Yanqing Hou,et al.  Optimization of effective parameters on Siemens reactor to achieve potential maximum deposition radius: An energy consumption analysis and numerical simulation , 2018 .

[33]  Sridhar K. Iya Production of ultra-high-purity polycrystalline silicon , 1986 .

[34]  Juan Gabriel Segovia-Hernández,et al.  Safety, Economic, and Environmental Optimization Applied to Three Processes for the Production of Solar-Grade Silicon , 2019, ACS Sustainable Chemistry & Engineering.

[35]  Douglas L. Erwin Industrial chemical process , 2016 .

[36]  Christos T. Maravelias,et al.  Surrogate-Based Process Synthesis , 2010 .

[37]  Andy J. Keane,et al.  Multi-Objective Optimization Using Surrogates , 2010 .

[38]  B. Erik Ydstie,et al.  Silicon solar cell production , 2011, Comput. Chem. Eng..

[39]  Xin Wang,et al.  Two-dimensional temperature distribution in fluidized bed reactors for synthesizing trichlorosilane , 2011 .

[40]  Charles Audet,et al.  A surrogate-model-based method for constrained optimization , 2000 .

[41]  Takeshi Yoshikawa,et al.  Thermodynamic evaluation of new metallurgical refining processes for SOG-silicon production , 2011 .

[42]  Sergio Pizzini,et al.  Towards solar grade silicon: Challenges and benefits for low cost photovoltaics , 2010 .

[43]  A. Blakers,et al.  A novel low-cost, high-efficiency micromachined silicon solar cell , 2004, IEEE Electron Device Letters.