Modular ssDNA binding and inhibition of telomerase activity by designer PPR proteins

[1]  Stefan J. Siira,et al.  PTCD1 Is Required for 16S rRNA Maturation Complex Stability and Mitochondrial Ribosome Assembly. , 2018, Cell reports.

[2]  James J. McDermott,et al.  RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR–RNA interactions , 2017, Nucleic acids research.

[3]  Stefan J. Siira,et al.  LRPPRC-mediated folding of the mitochondrial transcriptome , 2017, Nature Communications.

[4]  C. Armstrong,et al.  Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells , 2017, Open Biology.

[5]  Scott B. Cohen,et al.  Quantitative assays for measuring human telomerase activity and DNA binding properties. , 2017, Methods.

[6]  Aleksandra Filipovska,et al.  Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly. , 2016, Cell reports.

[7]  Q. Wang,et al.  Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins , 2016, Nature Communications.

[8]  Jennifer A. Doudna,et al.  Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering , 2016, Cell.

[9]  C. Bond,et al.  The design and structural characterization of a synthetic pentatricopeptide repeat protein. , 2015, Acta crystallographica. Section D, Biological crystallography.

[10]  A. Barkan,et al.  The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA , 2015, Nucleic acids research.

[11]  S. Thore,et al.  An artificial PPR scaffold for programmable RNA recognition , 2014, Nature Communications.

[12]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[13]  K. Cimprich,et al.  Causes and consequences of replication stress , 2013, Nature Cell Biology.

[14]  Chen Chen,et al.  Structural basis for RNA recognition by a dimeric PPR-protein complex , 2013, Nature Structural &Molecular Biology.

[15]  Y. Liu,et al.  Structural basis for the modular recognition of single-stranded RNA by PPR proteins , 2013, Nature.

[16]  Deborah S Wuttke,et al.  Single-stranded DNA-binding proteins: multiple domains for multiple functions. , 2013, Structure.

[17]  Aleksandra Filipovska,et al.  Pentatricopeptide repeats , 2013, RNA biology.

[18]  K. O'Byrne,et al.  Human single-stranded DNA binding proteins are essential for maintaining genomic stability , 2013, BMC Molecular Biology.

[19]  Shimpei Hayashi,et al.  Elucidation of the RNA Recognition Code for Pentatricopeptide Repeat Proteins Involved in Organelle RNA Editing in Plants , 2013, PloS one.

[20]  Charles S. Bond,et al.  A Combinatorial Amino Acid Code for RNA Recognition by Pentatricopeptide Repeat Proteins , 2012, PLoS genetics.

[21]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[22]  Keiko Kobayashi,et al.  Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein , 2011, Nucleic acids research.

[23]  O. Rackham,et al.  Designer RNA-binding proteins: New tools for manipulating the transcriptome , 2011, RNA biology.

[24]  J. Shay,et al.  Processive and distributive extension of human telomeres by telomerase under homeostatic and nonequilibrium conditions. , 2011, Molecular cell.

[25]  Timothy L. Bailey,et al.  Gene expression Advance Access publication May 4, 2011 DREME: motif discovery in transcription factor ChIP-seq data , 2011 .

[26]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[27]  Sandra K. Tanz,et al.  The Pentatricopeptide Repeat Protein OTP87 Is Essential for RNA Editing of nad7 and atp1 Transcripts in Arabidopsis Mitochondria* , 2011, The Journal of Biological Chemistry.

[28]  C. Bond,et al.  Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution , 2011, Proceedings of the National Academy of Sciences.

[29]  E. Blackburn Telomeres and telomerase: the means to the end (Nobel lecture). , 2010, Angewandte Chemie.

[30]  Rafael Sanjuán,et al.  Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[32]  I. Korf,et al.  Bind-n-Seq: high-throughput analysis of in vitro protein–DNA interactions using massively parallel sequencing , 2009, Nucleic acids research.

[33]  O. Dontsova,et al.  Replication protein A modulates the activity of human telomerase in vitro , 2009, Biochemistry (Moscow).

[34]  Wilhelm Palm,et al.  How shelterin protects mammalian telomeres. , 2008, Annual review of genetics.

[35]  R. Reddel,et al.  A sensitive direct human telomerase activity assay , 2008, Nature Methods.

[36]  T. Cech,et al.  The POT1–TPP1 telomere complex is a telomerase processivity factor , 2007, Nature.

[37]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[38]  D. Dubnau,et al.  The Ins and Outs of DNA Transfer in Bacteria , 2005, Science.

[39]  T. Cech,et al.  Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[41]  T. Cech,et al.  Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection , 2004, Nature Structural &Molecular Biology.

[42]  Yong Xiong,et al.  Design of stable alpha-helical arrays from an idealized TPR motif. , 2003, Structure.

[43]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[44]  J. Šponer,et al.  The Influence of the Thymine C5 Methyl Group on Spontaneous Base Pair Breathing in DNA* , 2002, The Journal of Biological Chemistry.

[45]  P. Baumann,et al.  Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans , 2001, Science.

[46]  T. Cech,et al.  Telomerase and the maintenance of chromosome ends. , 1999, Current opinion in cell biology.

[47]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[48]  E. Blackburn,et al.  A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis , 1989, Nature.

[49]  L. S. Cram,et al.  A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[51]  Carol W. Greider,et al.  Identification of a specific telomere terminal transferase activity in tetrahymena extracts , 1985, Cell.

[52]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.