Regularity for rough hypoelliptic equations
暂无分享,去创建一个
[1] K. Nystrom,et al. On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients , 2022, Mathematics in Engineering.
[2] Annalaura Rebucci,et al. A note on the weak regularity theory for degenerate Kolmogorov equations , 2021, Journal of Differential Equations.
[3] C. Mouhot,et al. Quantitative De Giorgi methods in kinetic theory , 2021, Journal de l’École polytechnique — Mathématiques.
[4] Yuzhe Zhu,et al. On a spatially inhomogeneous nonlinear Fokker-Planck equation: Cauchy problem and diffusion asymptotics , 2021, 2102.12795.
[5] Cyril Imbert,et al. LOG-TRANSFORM AND THE WEAK HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS , 2021, Journal of the Institute of Mathematics of Jussieu.
[6] Yuzhe Zhu. Velocity Averaging and Hölder Regularity for Kinetic Fokker-Planck Equations with General Transport Operators and Rough Coefficients , 2020, SIAM J. Math. Anal..
[7] C. Mouhot,et al. The Schauder estimate in kinetic theory with application to a toy nonlinear model , 2019, Annales Henri Lebesgue.
[8] S. Armstrong,et al. Variational methods for the kinetic Fokker-Planck equation , 2019, 1902.04037.
[9] S. Polidoro,et al. Moser’s estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients , 2019, Nonlinear Analysis.
[10] L. Silvestre,et al. The weak Harnack inequality for the Boltzmann equation without cut-off , 2016, Journal of the European Mathematical Society.
[11] C. Mouhot,et al. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation , 2016, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.
[12] G. Citti,et al. A subelliptic analogue of Aronson–Serrin’s Harnack inequality , 2011, 1109.4596.
[13] S. Polidoro,et al. Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators , 2008 .
[14] Wendong Wang,et al. The Cα regularity of a class of non-homogeneous ultraparabolic equations , 2007, 0711.3411.
[15] A. Pascucci,et al. THE MOSER'S ITERATIVE METHOD FOR A CLASS OF ULTRAPARABOLIC EQUATIONS , 2004 .
[16] A. Pascucci,et al. A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations , 2003 .
[17] A. Sánchez-Calle. Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .
[18] E. Stein,et al. Hypoelliptic differential operators and nilpotent groups , 1976 .
[19] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[20] J. Moser. A Harnack inequality for parabolic di2erential equations , 1964 .
[21] J. Moser. On Harnack's theorem for elliptic differential equations† , 1961 .
[22] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[23] Antje Baer,et al. Direct Methods In The Calculus Of Variations , 2016 .
[24] L. Brandolini,et al. Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities , 2010 .
[25] N. Trudinger. On the regularity of generalized solutions of linear, non-uniformly elliptic equations , 1971 .
[26] J. Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .
[27] A. Kolmogoroff,et al. Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .