Regularity for rough hypoelliptic equations

We present a general approach to obtain a weak Harnack inequality for rough hypoel-lipitic equations, e.g. kinetic equations. The proof is constructive and does not study the commutator structure but rather compares the rough solution with a smooth problem for which the estimates are assumed.

[1]  K. Nystrom,et al.  On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients , 2022, Mathematics in Engineering.

[2]  Annalaura Rebucci,et al.  A note on the weak regularity theory for degenerate Kolmogorov equations , 2021, Journal of Differential Equations.

[3]  C. Mouhot,et al.  Quantitative De Giorgi methods in kinetic theory , 2021, Journal de l’École polytechnique — Mathématiques.

[4]  Yuzhe Zhu,et al.  On a spatially inhomogeneous nonlinear Fokker-Planck equation: Cauchy problem and diffusion asymptotics , 2021, 2102.12795.

[5]  Cyril Imbert,et al.  LOG-TRANSFORM AND THE WEAK HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS , 2021, Journal of the Institute of Mathematics of Jussieu.

[6]  Yuzhe Zhu Velocity Averaging and Hölder Regularity for Kinetic Fokker-Planck Equations with General Transport Operators and Rough Coefficients , 2020, SIAM J. Math. Anal..

[7]  C. Mouhot,et al.  The Schauder estimate in kinetic theory with application to a toy nonlinear model , 2019, Annales Henri Lebesgue.

[8]  S. Armstrong,et al.  Variational methods for the kinetic Fokker-Planck equation , 2019, 1902.04037.

[9]  S. Polidoro,et al.  Moser’s estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients , 2019, Nonlinear Analysis.

[10]  L. Silvestre,et al.  The weak Harnack inequality for the Boltzmann equation without cut-off , 2016, Journal of the European Mathematical Society.

[11]  C. Mouhot,et al.  Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation , 2016, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[12]  G. Citti,et al.  A subelliptic analogue of Aronson–Serrin’s Harnack inequality , 2011, 1109.4596.

[13]  S. Polidoro,et al.  Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators , 2008 .

[14]  Wendong Wang,et al.  The Cα regularity of a class of non-homogeneous ultraparabolic equations , 2007, 0711.3411.

[15]  A. Pascucci,et al.  THE MOSER'S ITERATIVE METHOD FOR A CLASS OF ULTRAPARABOLIC EQUATIONS , 2004 .

[16]  A. Pascucci,et al.  A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations , 2003 .

[17]  A. Sánchez-Calle Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .

[18]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[19]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[20]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[21]  J. Moser On Harnack's theorem for elliptic differential equations† , 1961 .

[22]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[23]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[24]  L. Brandolini,et al.  Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities , 2010 .

[25]  N. Trudinger On the regularity of generalized solutions of linear, non-uniformly elliptic equations , 1971 .

[26]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[27]  A. Kolmogoroff,et al.  Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .