Sizing up metatranscriptomics

[1]  M. Moran,et al.  Expression patterns reveal niche diversification in a marine microbial assemblage , 2012, The ISME Journal.

[2]  Alexandre B. de Menezes,et al.  Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. , 2012, Environmental microbiology.

[3]  E. Delong,et al.  Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. , 2012, Environmental microbiology.

[4]  Bo Barker Jørgensen,et al.  Deep subseafloor microbial cells on physiological standby , 2011, Proceedings of the National Academy of Sciences.

[5]  Christian G. Klatt,et al.  Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat , 2011, The ISME Journal.

[6]  Daniel Patrick Smith,et al.  Energy Starved Candidatus Pelagibacter Ubique Substitutes Light-Mediated ATP Production for Endogenous Carbon Respiration , 2011, PloS one.

[7]  M. Moran,et al.  Quantitative analysis of a deeply sequenced marine microbial metatranscriptome , 2011, The ISME Journal.

[8]  M. Moran,et al.  Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate , 2010, The ISME Journal.

[9]  E. Delong,et al.  Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea , 2010, Proceedings of the National Academy of Sciences.

[10]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[11]  S. Chisholm,et al.  Short RNA half-lives in the slow-growing marine cyanobacterium Prochlorococcus , 2010, Genome Biology.

[12]  A. Wichels,et al.  Constitutive Expression of the Proteorhodopsin Gene by a Flavobacterium Strain Representative of the Proteorhodopsin-Producing Microbial Community in the North Sea , 2010, Applied and Environmental Microbiology.

[13]  Mary Ann Moran,et al.  Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon , 2010, Environmental microbiology.

[14]  Luis Serrano,et al.  Correlation of mRNA and protein in complex biological samples , 2009, FEBS letters.

[15]  Matthew Z. DeMaere,et al.  The genomic basis of trophic strategy in marine bacteria , 2009, Proceedings of the National Academy of Sciences.

[16]  Richard D. Smith,et al.  Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea , 2009, The ISME Journal.

[17]  P. Bork,et al.  Molecular eco-systems biology: towards an understanding of community function , 2008, Nature Reviews Microbiology.

[18]  Ioannis P. Androulakis,et al.  On the Potential for Integrating Gene Expression and Metabolic Flux Data , 2008 .

[19]  J. Gilbert,et al.  Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities , 2008, PloS one.

[20]  Roman Stocker,et al.  Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches , 2008, Proceedings of the National Academy of Sciences.

[21]  C. Brearley,et al.  Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. , 2008, Environmental microbiology.

[22]  F. Azam,et al.  Microbial structuring of marine ecosystems , 2007, Nature Reviews Microbiology.

[23]  F. Azam,et al.  Microbial structuring of marine ecosystems , 2007, Nature Reviews Microbiology.

[24]  Alexander van Oudenaarden,et al.  Stochastic Gene Expression: from Single Molecules to the Proteome This Review Comes from a Themed Issue on Chromosomes and Expression Mechanisms Edited Measuring Noise Mrna Fluctuations , 2022 .

[25]  Xiaohua Hu,et al.  Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. , 2006, Molecular biology and evolution.

[26]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[27]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[28]  Michael I. Jordan,et al.  Sulfur and Nitrogen Limitation in Escherichia coli K-12: Specific Homeostatic Responses , 2005, Journal of bacteriology.

[29]  S. Doney,et al.  From genes to ecosystems: the ocean's new frontier , 2004 .

[30]  P. Price,et al.  Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Jansson,et al.  Changes of amino acid sequence in PEST-like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II , 1994, Plant Molecular Biology.

[32]  G. Hambraeus,et al.  Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs , 2003, Molecular Genetics and Genomics.

[33]  G. Church,et al.  Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. , 2003, Genome research.

[34]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Fenchel Microbial Behavior in a Heterogeneous World , 2002, Science.

[36]  P. Kemp,et al.  Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes , 1994 .

[37]  Egbert J. de Vries,et al.  Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions , 1993, Applied and environmental microbiology.

[38]  F. Singleton,et al.  Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery , 1992, Applied and environmental microbiology.

[39]  F. Azam,et al.  Protein content and protein synthesis rates of planktonic marine bacteria , 1989 .

[40]  J. Fuhrman,et al.  Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton. , 1987, Applied and environmental microbiology.

[41]  R. Schleif,et al.  Identification of araC protein and two-dimensional gels, its in vivo instability and normal level. , 1981, Journal of molecular biology.

[42]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[43]  P. Dennis,et al.  Macromolecular Composition During Steady-State Growth of Escherichia coli B/r , 1974, Journal of bacteriology.

[44]  W. Donachie,et al.  Growth of the Bacterial Cell , 1970, Nature.

[45]  D. Rittenberg,et al.  PROTEIN TURNOVER IN MICRO-ORGANISMS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Mandelstam,et al.  Turnover of protein in growing and non-growing populations of Escherichia coli. , 1958, The Biochemical journal.

[47]  Koch Al,et al.  Protein turnover in growing cultures of Escherichia coli. , 1955 .

[48]  A. L. Koch,et al.  Protein turnover in growing cultures of Escherichia coli. , 1955, The Journal of biological chemistry.

[49]  H. E. Roaf,et al.  Direct Measurement of the Osmotic Pressure of Casein in Alkaline Solution. Experimental Proof that apparent impermeability of a Membrane to Ions is not due to the Properties of the Membrane but to the Colloid contained within the Membrane. , 1912, The Biochemical journal.