Dynamical properties of electrical circuits with fully nonlinear memristors

The recent design of a nanoscale device with a memristive characteristic has had a great impact in nonlinear circuit theory. Such a device, whose existence was predicted by Leon Chua in 1971, is governed by a charge-dependent voltage-current relation of the form $v=M(q)i$. In this paper we show that allowing for a fully nonlinear characteristic $v=\eta(q, i)$ in memristive devices provides a general framework for modeling and analyzing a very broad family of electrical and electronic circuits; Chua's memristors are particular instances in which $\eta(q,i)$ is linear in $i$. We examine several dynamical features of circuits with fully nonlinear memristors, accommodating not only charge-controlled but also flux-controlled ones, with a characteristic of the form $i=\zeta(\varphi, v)$. Our results apply in particular to Chua's memristive circuits; certain properties of these can be seen as a consequence of the special form of the elastance and reluctance matrices displayed by Chua's memristors.

[1]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[2]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[3]  P. Bryant,et al.  The Explicit Form of Bashkow's A Matrix , 1962 .

[4]  Ricardo Riaza,et al.  Augmented nodal matrices and normal trees , 2010, Discret. Appl. Math..

[5]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[6]  Caren Tischendorf,et al.  Topological index‐calculation of DAEs in circuit simulation , 1998 .

[7]  Ricardo Riaza,et al.  Graph-Theoretic Characterization of bifurcation Phenomena in Electrical Circuit Dynamics , 2010, Int. J. Bifurc. Chaos.

[8]  R. McCreery,et al.  Solid-State Electrochemistry in Molecule/TiO 2 Molecular Heterojunctions as the Basis of the TiO 2 "Memristor" , 2009 .

[9]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[10]  P. Bryant,et al.  The order of complexity of electrical networks , 1959 .

[11]  E. Keith Lloyd,et al.  Introductory Graph Theory , 1978 .

[12]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[15]  E. Kay,et al.  Introductory Graph Theory , 1978 .

[16]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[17]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[18]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[19]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[20]  Antonino M. Sommariva,et al.  State‐space equations of regular and strictly topologically degenerate linear lumped time‐invariant networks: the multiport method , 2001, Int. J. Circuit Theory Appl..

[21]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[22]  Satoru Iwata,et al.  Index characterization of differential–algebraic equations in hybrid analysis for circuit simulation , 2010 .

[23]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[24]  Martin Hasler,et al.  Nonlinear Circuits , 1986 .

[25]  Ricardo Riaza,et al.  Tree-based characterization of low index circuit configurations without passivity restrictions , 2008, Int. J. Circuit Theory Appl..

[26]  RICARDO RIAZA,et al.  Explicit ODE Reduction of Memristive Systems , 2011, Int. J. Bifurc. Chaos.

[27]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[28]  L. Chua Memristor-The missing circuit element , 1971 .

[29]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[30]  Ricardo Riaza,et al.  Semistate models of electrical circuits including memristors , 2011, Int. J. Circuit Theory Appl..

[31]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[32]  Albert C. J. Luo,et al.  An Analytical Prediction of Periodic Flows in the Chua Circuit System , 2009, Int. J. Bifurc. Chaos.

[33]  B. Andrásfai Graph Theory: Flows, Matrices , 1991 .

[34]  Alejandro J. Rodríguez-Luis,et al.  A bifurcation analysis of a simple electronic circuit , 2005 .

[35]  Raj Senani,et al.  Sinusoidal oscillators with explicit current output employing current-feedback op-amps , 2010 .

[36]  Diana Estévez Schwarz,et al.  Actual Problems of Circuit Simulation in Industry , 2003 .

[37]  David P. Brown Derivative-explicit differential equations for RLC graphs☆ , 1963 .

[38]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[39]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[40]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[41]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[42]  F. R. Gantmakher The Theory of Matrices , 1984 .

[43]  Michał Tadeusiewicz,et al.  Global and local stability of circuits containing MOS transistors , 2001 .

[44]  Leon O. Chua,et al.  Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks , 2009, Int. J. Bifurc. Chaos.

[45]  L. Chua,et al.  On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks , 1979 .

[46]  Hsiao-Dong Chiang,et al.  Convergent regions of the Newton homotopy method for nonlinear systems: theory and computational applications , 2001 .

[47]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[48]  Xinman Chen,et al.  Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications , 2008 .

[49]  Marc Fosseprez,et al.  Non-linear Circuits: Qualitative Analysis of Non-linear, Non-reciprocal Circuits , 1992 .

[50]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[51]  T. Bashkow,et al.  The A Matrix, New Network Description , 1957 .

[52]  B. C. Haggman,et al.  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part I: Conservation laws , 1986 .

[53]  Marcelo Messias,et al.  Hopf bifurcation from Lines of Equilibria without Parameters in Memristor oscillators , 2010, Int. J. Bifurc. Chaos.

[54]  Enrique Ponce,et al.  Following a saddle-Node of Periodic orbits' bifurcation Curve in Chua's Circuit , 2009, Int. J. Bifurc. Chaos.

[55]  A. M. Sommariva State-space equations of regular and strictly topologically degenerate linear lumped time-invariant networks: the implicit tree-tableau method , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[56]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[57]  Frank Harary,et al.  Graph Theory , 2016 .

[58]  Alan N. Willson,et al.  An algorithm for identifying unstable operating points using SPICE , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[59]  Timo Reis,et al.  Circuit synthesis of passive descriptor systems—a modified nodal approach , 2010 .

[60]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[61]  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part II: Symmetries , 1986 .

[62]  Hai Helen Li,et al.  Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.

[63]  Christophe Letellier,et al.  Development of the Nonlinear Dynamical Systems Theory from Radio Engineering to Electronics , 2009, Int. J. Bifurc. Chaos.

[64]  W. Rheinboldt,et al.  Theoretical and numerical analysis of differential-algebraic equations , 2002 .

[65]  J. Willems,et al.  On Differential Algebraic Systems , 1995 .

[66]  R. März Differential algebraic systems anew , 2002 .

[67]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[68]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[69]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.