On the origin of mesoscale TIDs at midlatitudes

Abstract. A recent breakthrough experiment by Ogawa et al. (2009) showed that Mesoscale Traveling Ionospheric Disturbances (MSTIDs), a common phenomenon at midlatitudes, originate in the auroral zone as gravity waves. Curiously, however, the latter do not seem to be related to magnetic activity. These atmospheric waves are common at high latitudes (Bristow and Greenwald, 1996; Bristow et al., 1996), and we argue here that, as they propagate to lower latitudes, Joule damping reduces the gravity wave spectrum to waves suffering the weakest damping. The direction of weakest damping corresponds to the direction predicted by the Perkins instability (Perkins, 1973) for nighttime MSTIDs. The daytime features reported by Ogawa et al. (2009) are very likely due to classical gravity wave interaction with the F-region ionosphere.

[1]  Russell B. Cosgrove,et al.  Instability of the E‐F coupled nighttime midlatitude ionosphere , 2003 .

[2]  Guanghui Wu,et al.  Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer : seasonal and local time behavior , 1995 .

[3]  C. Hines The upper atmosphere in motion : a selection of papers with annotation , 1974 .

[4]  S. Fukao,et al.  Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and E region field-aligned irregularities at midlatitude , 2007 .

[5]  Michael C. Kelley,et al.  Airglow observations of mesoscale low‐velocity traveling ionospheric disturbances at midlatitudes , 2000 .

[6]  J. H. Elder,et al.  High‐resolution studies of atmosphere‐ionosphere coupling at Arecibo Observatory, Puerto Rico , 1997 .

[7]  F. Perkins,et al.  Spread F and ionospheric currents , 1973 .

[8]  T. Yokoyama,et al.  A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence and propagation of medium‐scale traveling ionospheric disturbances , 2010 .

[9]  Clark A. Miller,et al.  Electrodynamics of midlatitude spread F 3. Electrohydrodynamic waves? A new look at the role of electric fields in thermospheric wave dynamics , 1997 .

[10]  G. G. Bowman Quasi-periodic scintillations at mid-latitudes and their possible association with ionospheric sporadic-E structures , 1989 .

[11]  Peter. Dyson,et al.  A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions , 2007 .

[12]  R. Greenwald,et al.  On the seasonal dependence of medium‐scale atmospheric gravity waves in the upper atmosphere at high latitudes , 1996 .

[13]  S. Musman,et al.  Mesoscale structure of the midlatitude ionosphere during high geomagnetic activity: Airglow and GPS observations , 2000 .

[14]  L. Blomberg,et al.  Conjugate observations of the mid-latitude electric field fluctuations with the MU radar and the Freja satellite , 1998 .

[15]  M. Yamamoto,et al.  Turbulent upwelling of the mid‐latitude ionosphere: 1. Observational results by the MU radar , 1991 .

[16]  Timothy Fuller-Rowell,et al.  Electric field variability associated with the Millstone Hill electric field model , 2000 .

[17]  Michael Charles Kelly,et al.  The Earth's Ionosphere: Plasma Physics and Electrodynamics, Second Edition , 2009 .

[18]  T. Yokoyama,et al.  First three‐dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere , 2008 .

[19]  Akinori Saito,et al.  The mid-latitude F region at the mesoscale: some progress at last , 2002 .

[20]  S. Fukao,et al.  Turbulent upwelling of the mid‐latitude ionosphere: 2. Theoretical framework , 1991 .

[21]  Bodo W. Reinisch,et al.  Investigations of thermospheric‐ionospheric dynamics with 6300‐Å images from the Arecibo Observatory , 1997 .

[22]  Y. Otsuka,et al.  Climatological study of GPS total electron content variations caused by medium‐scale traveling ionospheric disturbances , 2006 .

[23]  Michael C. Kelley,et al.  The earth's ionosphere , 1989 .

[24]  G. Hussey,et al.  Role of unstable sporadic‐E layers in the generation of midlatitude spread F , 2003 .

[25]  T. Yokoyama,et al.  Three‐dimensional simulation of the coupled Perkins and Es‐layer instabilities in the nighttime midlatitude ionosphere , 2008 .

[26]  M. Alexander,et al.  Mechanism for the Generation of Secondary Waves in Wave Breaking Regions , 2003 .

[27]  D. Strobel Book Review: Aeronomy, Parts A and B. P. M. BANKS and G. KOCKARTS. Academic Press, Inc. New York, 1973. Parts A and B, 45 hardbound. Part A, 430 pp. Price 28 Part B, 355 pp. Price $24 , 1974 .

[28]  Keisuke Hosokawa,et al.  Medium-scale traveling ionospheric disturbances observed with the SuperDARN Hokkaido radar, all-sky imager, and GPS network and their relation to concurrent sporadic E irregularities , 2009 .

[29]  G. G. Bowman Some aspects of mid-latitude spread-Es and its relationship with spread-F , 1985 .

[30]  S. Vadas,et al.  Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves , 2009 .

[31]  R. A. Behnke,et al.  F layer height bands in the nocturnal ionosphere over Arecibo , 1979 .

[32]  F. Mozer,et al.  A satellite survey of vector electric fields in the ionosphere at frequencies of 10 to 500 Hertz: 1. Isotropic, high‐latitude electrostatic emissions , 1972 .

[33]  R. Greenwald,et al.  Multiradar observations of medium‐scale acoustic gravity waves using the Super Dual Auroral Radar Network , 1996 .

[34]  K. Shiokawa,et al.  Geomagnetic conjugate observations of medium‐scale traveling ionospheric disturbances at midlatitude using all‐sky airglow imagers , 2004 .

[35]  V. K. Wong,et al.  Case studies of coupling between the E and F regions during unstable sporadic‐E conditions , 2003 .

[36]  Clark A. Miller,et al.  Basic properties and gravity wave initiation of the midlatitude F region instability , 1994 .

[37]  M. Yamamoto,et al.  Coupling of the Perkins instability and the sporadic E layer instability derived from physical arguments , 2004 .