A Survey of Recent Progress on Level-Crossing Problems for Random Processes

Since Blake and Lindsey’s [19] comprehensive survey of results and techniques for level-crossing problems for random processes appeared in 1973, a number of interesting new results addressing both classical and new problem areas have been developed. As there are many diverse areas of application of level crossing results, the theoretical literature is fairly widely dispersed. The present survey is intended to be an update of Blake and Lindsey’s and is intended to be similar to theirs with an emphasis on explicit analytical results for continuous parameter processes. As they discussed many of the techniques and methods available in an accessible tutorial fashion, the present survey will be confined to an overview of the results that are available.

[1]  Georg Lindgren,et al.  Use and Structure of Slepian Model Processes for Prediction and Detection in Crossing and Extreme Value Theory , 1984 .

[2]  Richard Barakat,et al.  The level-crossing rate and above-level duration time of the intensity of a gaussian random process , 1980, Inf. Sci..

[3]  Mario Wschebor,et al.  The Two-Parameter Brownian Bridge: Kolmogorov Inequalities and Upper and Lower Bounds for the Distribution of the Maximum , 1982 .

[4]  John T. Rickard,et al.  The zero-crossing interval statistics of the smoothed random telegraph signal , 1977, Inf. Sci..

[5]  D. P. Kennedy,et al.  The distribution of the maximum Brownian excursion , 1976, Journal of Applied Probability.

[6]  Israel Bar-David,et al.  Passages and Maxima for a Particular Gaussian Process , 1975 .

[7]  Israel Bar-David A sample path property of matched-filter outputs with applications to detection and estimation , 1976, IEEE Trans. Inf. Theory.

[8]  Endre Csáki,et al.  Excursion and meander in random walk , 1981 .

[9]  Georg Lindgren,et al.  Extreme values and crossings for the X 2-Process and Other Functions of Multidimensional Gaussian Processes, by Reliability Applications , 1980, Advances in Applied Probability.

[10]  E. Masry On Covariance Functions of Unit Processes , 1972 .

[11]  André Barbé A measure for the mean level-crossing activity of stationary normal processes (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[12]  Julia Abrahams On Miroshin’s Second-Order Reciprocal Processes , 1984 .

[13]  J. M. C. Clark,et al.  Characterizing the autocorrelations of binary sequences , 1983, IEEE Trans. Inf. Theory.

[14]  Vladimir I. Piterbarg,et al.  Exact Asymptotic Behavior of the Probability of a Large Span of a Stationary Gaussian Process , 1982 .

[15]  R. N. Miroshin Convergence of Longuet-Higgins Series for Stationary Gaussian Markov Processes of First Order , 1981 .

[16]  William F. Eddy,et al.  THE CONVEX HULL OF A SPHERICALLY SYMMETRIC SAMPLE , 1981 .

[17]  Sidney I. Resnick,et al.  Extreme values of independent stochastic processes , 1977 .

[18]  Israel Bar-David,et al.  Radon-Nikodym derivatives, passages and maxima for a Gaussian process with particular covariance and mean , 1975, Journal of Applied Probability.

[19]  Georg Ch. Pflug A statistically important Gaussian Process , 1982 .

[20]  G. Lindgren,et al.  Some Properties of a Normal Process Near a Local Maximum , 1970 .

[21]  Mario Wschebor,et al.  An estimate for the tails of the distribution of the supremum for a class of stationary multiparameter Gaussian processes , 1981 .

[22]  V. I. Khimenko The average number of trajectory overshoots of a non-gaussian random process above a given level , 1978 .

[23]  B. Jamison,et al.  Reciprocal Processes: The Stationary Gaussian Case , 1970 .

[24]  Israel Bar-David Sample functions of a Gaussian process cannot be recovered from their zero crossings (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[25]  M. T. Wasan On an inverse Gaussian process , 1968 .

[26]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[27]  M. R. Leadbetter Point processes generated by level crossings , 1971 .

[28]  R. F. Pawula,et al.  The zero crossing variance of the smoothed random telegraph signal , 1975 .

[29]  J. Kiefer,et al.  K-Sample Analogues of the Kolmogorov-Smirnov and Cramer-V. Mises Tests , 1959 .

[30]  Ole E. Barndorff-Nielsen,et al.  First hitting time models for the generalized inverse Gaussian distribution , 1978 .

[31]  Israel Bar-David,et al.  Leading Edge Estimation Errors , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[32]  K. J. Ebeling,et al.  Statistical Properties of Spatial Derivatives of the Amplitude and Intensity of Monochromatic Speckle Patterns , 1979 .

[33]  S. C. Chay,et al.  On quasi-Markov random fields , 1972 .

[34]  David M. De Long Crossing probabilities for a square root boundary by a bessel process , 1981 .

[35]  Katja Lindenberg,et al.  Extrema statistics of Wiener-Einstein processes in one, two, and three dimensions , 1980 .

[36]  E. M. Cabaña On the transition density of a multidimensional parameter Wiener process with one barrier , 1984 .

[37]  K. Sharpe,et al.  Level crossings of a constructed process , 1979, Journal of Applied Probability.

[38]  M. Goldman ON THE FIRST PASSAGE OF THE INTEGRATED WIENER PROCESS , 1971 .

[39]  John B. Thomas,et al.  Some comments on conditionally Markov and reciprocal Gaussian processes , 1981, IEEE Trans. Inf. Theory.

[40]  David Slepian Estimation of the Gauss-Markov process from observation of its sign , 1983 .

[41]  G. Lindgren Model processes in nonlinear prediction with application to detection and alarm , 1980 .

[42]  D. P. Kennedy,et al.  Limit theorems for finite dams , 1973 .

[43]  R. F. Pawfjla Statistical geometry of the smoothed random telegraph signal , 1972 .

[44]  Jacques de Maré,et al.  Optimal Prediction of Catastrophes with Applications to Gaussian Processes , 1980 .

[45]  Luigi M. Ricciardi,et al.  A note on first passage time problems for Gaussian processes and varying boundaries , 1983, IEEE Trans. Inf. Theory.

[46]  Laura Sacerdote,et al.  MEAN VARIANCE AND SKEWNESS OF THE FIRST PASSAGE TIME FOR THE ORNSTEIN-UHLENBECK PROCESS , 1981 .

[47]  H. E. Daniels The minimum of a stationary Markov process superimposed on a U-shaped trend , 1969 .

[48]  Ian F. Blake,et al.  Level-crossing problems for random processes , 1973, IEEE Trans. Inf. Theory.

[49]  R. N. Miroshin Convergence of Rice Longuet-Higgins Series for a Wong Process , 1977 .

[50]  Farag Abdel,et al.  On the level-upcrossings of stochastic processes , 1979 .

[51]  L. A. Shepp,et al.  FIRST-PASSAGE TIME FOR A PARTICULAR STATIONARY PERIODIC GAUSSIAN PROCESS , 1976 .

[52]  Jacques de Maré Reconstruction of a stationary Gaussian process from its sign-changes , 1977 .

[53]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[54]  K. Sharpe,et al.  SOME PROPERTIES OF THE CROSSINGS PROCESS GENERATED BY A STATIONARY X2 PROCESS , 1978 .

[55]  Lennart Bondesson,et al.  Classes of infinitely divisible distributions and densities , 1981 .

[56]  Michael B. Marcus,et al.  Level Crossings of a Stochastic Process with Absolutely Continuous Sample Paths , 1977 .

[57]  Jacques de Maré,et al.  THE BEHAVIOUR OF A NON-DIFFERENTIABLE STATIONARY GAUSSIAN PROCESS AFTER A LEVEL CROSSING* , 1977 .

[58]  J. Hammersley,et al.  Diffusion Processes and Related Topics in Biology , 1977 .

[59]  Chull Park,et al.  Distribution estimates of barrier-crossing probabilities of the Yeh-Wiener process. , 1978 .

[60]  Elias Masry A note on Gaussian processes and zero-memory non-linear transformations , 1977 .

[61]  Noel A Cressie,et al.  The supremum distribution of another Gaussian process , 1981, Journal of Applied Probability.

[62]  Luigi M. Ricciardi,et al.  On the inverse of the first passage time probability problem , 1972 .

[63]  L. Shepp The joint density of the maximum and its location for a Wiener process with drift , 1979, Journal of Applied Probability.

[64]  Kehar Singh,et al.  Expected number of intensity level crossings in a normal speckle pattern , 1980 .

[65]  Israel Bar-David,et al.  Level crossings of nondifferentiable shot processes , 1972, IEEE Trans. Inf. Theory.

[66]  Julia Abrahams,et al.  Ramp crossings for Slepian's process , 1984, IEEE Trans. Inf. Theory.

[67]  Piet Groeneboom,et al.  University of Washington , 2019, The Grants Register 2020.

[68]  Julia Abrahams The zero-crossing problem for some nonstationary Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[69]  Chull Park,et al.  WIENER INTEGRALS OVER THE SETS BOUNDED BY SECTIONALLY CONTINUOUS BARRIERS , 1976 .

[70]  Shunji Osaki,et al.  On a first-passage problem for a cumulative process with exponential decay , 1976 .

[71]  S. Paranjape,et al.  DISTRIBUTION OF THE SUPREMUM OF THE TWO-PARAMETER YEH-WIENER PROCESS ON THE BOUNDARY , 1973 .

[72]  T. W. Anderson A MODIFICATION OF THE SEQUENTIAL PROBABILITY RATIO TEST TO REDUCE THE SAMPLE SIZE , 1960 .

[73]  D. DeLong,et al.  Some asymptotic properties of a progressively censored nonparametric test for multiple regression , 1980 .

[74]  Julia Abrahams,et al.  Distribution of the supremum of the two-parameter slepian process on the boundary of the unit square☆ , 1984 .

[75]  J. G. Wendel Hitting Spheres with Brownian Motion , 1980 .

[76]  Arthur H. C. Chan SOME LOWER BOUNDS FOR THE DISTRIBUTION OF THE SUPREMUM OF THE YEH-WIENER PROCESS OVER A RECTANGULAR REGION , 1975 .

[77]  J. Beekman,et al.  STOCHASTIC BARRIERS FOR THE WIENER PROCESS , 1983 .

[78]  Joseph W. Haus,et al.  Passage-time statistics for the decay of unstable equilibrium states , 1981 .

[79]  Naomi B. Robbins,et al.  Some Characteristics of Page's Two-sided Procedure for Detecting a Change in a Location Parameter , 1971 .

[80]  D. A. Darling On the Supremum of a Certain Gaussian Process , 1983 .

[81]  Robert J. Adler,et al.  The Supremum of a Particular Gaussian Field , 1984 .

[82]  R. N. Miroshin Second-Order Markov and Reciprocal Stationary Gaussian Processes , 1980 .

[83]  R. F. Pawula,et al.  The probability density and level-crossings of first-order non-linear systems driven by the random telegraph signal† , 1977 .

[84]  Victor Goodman,et al.  Distribution Estimates for Functionals of the Two-Parameter Wiener Process , 1976 .