Multivalent in vivo delivery of DNA-encoded bispecific T cell engagers effectively controls heterogeneous GBM tumors and mitigates immune escape

[1]  L. Álvarez-Vallina,et al.  Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer , 2022, Oncoimmunology.

[2]  V. Préat,et al.  Immunotherapy for glioblastoma: the promise of combination strategies , 2022, Journal of experimental & clinical cancer research : CR.

[3]  Jinming Yu,et al.  The landscape of bispecific T cell engager in cancer treatment , 2021, Biomarker research.

[4]  M. Friedrich,et al.  Preclinical Assessment of AMG 596, a Bispecific T-cell Engager (BiTE) Immunotherapy Targeting the Tumor-specific Antigen EGFRvIII , 2021, Molecular Cancer Therapeutics.

[5]  E. Baldwin,et al.  Teclistamab is an active T cell-redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. , 2020, Blood advances.

[6]  E. Richardson,et al.  Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms , 2020, Cancer Gene Therapy.

[7]  R. Bargou,et al.  T cell-engaging therapies — BiTEs and beyond , 2020, Nature Reviews Clinical Oncology.

[8]  D. Weiner,et al.  In Vivo Delivery of Nucleic Acid-Encoded Monoclonal Antibodies , 2020, BioDrugs.

[9]  S. Srivastava,et al.  Targeting Glioblastoma Tumor Microenvironment. , 2020, Advances in experimental medicine and biology.

[10]  K. Skelding,et al.  Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets , 2019, Front. Oncol..

[11]  D. Weiner,et al.  DNA-encoded bispecific T cell engagers and antibodies present long-term antitumor activity. , 2019, JCI insight.

[12]  S. Hu-Lieskovan,et al.  Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics , 2019, Journal of Immunotherapy for Cancer.

[13]  N. Sardesai,et al.  In Vivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model , 2018, Cell reports.

[14]  Zhihong Chen,et al.  Immune Microenvironment in Glioblastoma Subtypes , 2018, Front. Immunol..

[15]  N. Sardesai,et al.  An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model , 2017, Nature Communications.

[16]  E. Zhukovsky,et al.  Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells , 2017, Protein engineering, design & selection : PEDS.

[17]  G. Reifenberger,et al.  Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors , 2017, Clinical Cancer Research.

[18]  K. Mansfield,et al.  A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma , 2017, Science Translational Medicine.

[19]  A. Azmi,et al.  Immune evasion in cancer: Mechanistic basis and therapeutic strategies. , 2015, Seminars in cancer biology.

[20]  Michael Dallas,et al.  Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial , 2015, The Lancet.

[21]  L. Recht,et al.  A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. , 2015, Neuro-oncology.

[22]  T. Cloughesy,et al.  Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma , 2015, Nature Reviews Cancer.

[23]  Na Li,et al.  Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma , 2015, Science Translational Medicine.

[24]  H. Ellis,et al.  Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma , 2015, Front. Oncol..

[25]  Tao Jiang,et al.  Tumour-infiltrating CD4+ and CD8+ lymphocytes as predictors of clinical outcome in glioma , 2014, British Journal of Cancer.

[26]  M. Friedrich,et al.  Regression of Human Prostate Cancer Xenografts in Mice by AMG 212/BAY2010112, a Novel PSMA/CD3-Bispecific BiTE Antibody Cross-Reactive with Non-Human Primate Antigens , 2012, Molecular Cancer Therapeutics.

[27]  R. Dubridge,et al.  The immunogenicity of humanized and fully human antibodies , 2010, mAbs.

[28]  R. Grossman,et al.  HER2-Specific T Cells Target Primary Glioblastoma Stem Cells and Induce Regression of Autologous Experimental Tumors , 2010, Clinical Cancer Research.

[29]  D. Greiner,et al.  Human peripheral blood leucocyte non‐obese diabetic‐severe combined immunodeficiency interleukin‐2 receptor gamma chain gene mouse model of xenogeneic graft‐versus‐host‐like disease and the role of host major histocompatibility complex , 2009, Clinical and experimental immunology.

[30]  K. Gupta,et al.  Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer , 2007, Nature Medicine.

[31]  J. Bansard,et al.  Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy , 2006, Journal of Neuro-Oncology.

[32]  R. Koup,et al.  Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. , 2003, Journal of immunological methods.

[33]  Iduna Fichtner,et al.  T Cell Costimulus-Independent and Very Efficacious Inhibition of Tumor Growth in Mice Bearing Subcutaneous or Leukemic Human B Cell Lymphoma Xenografts by a CD19-/CD3- Bispecific Single-Chain Antibody Construct1 , 2003, The Journal of Immunology.