Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.

Gentle manipulation of micrometer-sized dielectric objects with optical forces has found many applications in both life and physical sciences. To further extend optical trapping toward the true nanometer scale, we present an original approach combining self-induced back action (SIBA) trapping with the latest advances in nanoscale plasmon engineering. The designed resonant trap, formed by a rectangular plasmonic nanopore, is successfully tested on 22 nm polystyrene beads, showing both single- and double-bead trapping events. The mechanism responsible for the higher stability of the double-bead trapping is discussed, in light of the statistical analysis of the experimental data and numerical calculations. Furthermore, we propose a figure of merit that we use to quantify the achieved trapping efficiency and compare it to prior optical nanotweezers. Our approach may open new routes toward ultra-accurate immobilization and arrangement of nanoscale objects, such as biomolecules.

[1]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[2]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[3]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[4]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[5]  L. Lagae,et al.  Groove-gratings to optimize the electric field enhancement in a plasmonic nanoslit-cavity , 2010 .

[6]  L. Oddershede,et al.  Two-photon quantum dot excitation during optical trapping. , 2010, Nano letters.

[7]  Marek Piliarik,et al.  Local refractive index sensitivity of plasmonic nanoparticles. , 2011, Optics express.

[8]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[9]  L. Lagae,et al.  Focusing plasmons in nanoslits for surface-enhanced Raman scattering. , 2009, Small.

[10]  H. Herzig,et al.  Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders , 2004 .

[11]  Liesbet Lagae,et al.  Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .

[12]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[13]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[14]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[15]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[16]  Tiberiu-Dan Onuta,et al.  Optical Trapping with Integrated Near-Field Apertures , 2004 .

[17]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[18]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[19]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[20]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[21]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[22]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[23]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[24]  L. Lagae,et al.  Highly confined surface plasmon polariton resonances in rectangular nanopore cavities , 2010 .

[25]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[26]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[27]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[28]  Kadir Aslan,et al.  Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. , 2005, Current opinion in chemical biology.

[29]  D. Shao,et al.  Surface-plasmon-assisted nanoscale photolithography by polarized light , 2005 .

[30]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[31]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[32]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.

[33]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[34]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[35]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[36]  Giovanni Volpe,et al.  Surface plasmon radiation forces. , 2006, Physical review letters.

[37]  Lih Y. Lin,et al.  Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. , 2007, Optics letters.

[38]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.