Simultaneous local exact controllability of 1D bilinear Schrödinger equations

We consider N independent quantum particles, in an infinite square potential well coupled to an external laser field. These particles are modelled by a system of linear Schrodinger equations on a bounded interval. This is a bilinear control system in which the state is the N-tuple of wave functions. The control is the real amplitude of the laser field. For N=1, Beauchard and Laurent proved local exact controllability around the ground state in arbitrary time. We prove, under an extra generic assumption, that their result does not hold in small time if N is greater or equal than 2. Still, for N=2, we prove using Coron's return method that local controllability holds either in arbitrary time up to a global phase or exactly up to a global delay. We also prove that for N greater or equal than 3, local controllability does not hold in small time even up to a global phase. Finally, for N=3, we prove that local controllability holds up to a global phase and a global delay.

[1]  Mazyar Mirrahimi,et al.  Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well , 2009, SIAM J. Control. Optim..

[2]  Vilmos Komornik,et al.  Fourier Series in Control Theory , 2005 .

[3]  R. P. Boas,et al.  A General Moment Problem , 1941 .

[4]  J. Lions Controlabilite exacte, perturbations et stabilisation de systemes distribues , 1988 .

[5]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[6]  Karine Beauchard,et al.  Semi-global weak stabilization of bilinear Schrödinger equations , 2010 .

[7]  Eduardo Cerpa,et al.  Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain , 2009 .

[8]  Jean-Michel Coron,et al.  Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations , 2002 .

[9]  T. Horsin,et al.  On the controllability of the burger equation , 1998 .

[10]  Jean-Michel Coron,et al.  Null Controllability of a Parabolic System with a Cubic Coupling Term , 2010, SIAM J. Control. Optim..

[11]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .

[12]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[13]  Karine Beauchard,et al.  Local controllability of 1D Schrödinger equations with bilinear control and minimal time , 2012, 1208.5393.

[14]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[15]  J. Coron,et al.  Local null controllability of the two-dimensional Navier–Stokes system in the torus with a control force having a vanishing component , 2009 .

[16]  Pierre Rouchon Control of a Quantum Particle in a Moving Potential Well , 2003 .

[17]  J. Coron Control and Nonlinearity , 2007 .

[18]  Vahagn Nersesyan,et al.  Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.

[19]  Sergio Guerrero,et al.  On the Uniform Controllability of the Burgers Equation , 2007, SIAM J. Control. Optim..

[20]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[21]  Olivier Glass,et al.  Exact boundary controllability of 3-D Euler equation , 2000 .

[22]  Morgan Morancey Explicit approximate controllability of the Schrödinger equation with a polarizability term , 2013, Math. Control. Signals Syst..

[23]  Sylvain Ervedoza,et al.  Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .

[24]  Marianne Chapouly,et al.  On the global null controllability of a Navier–Stokes system with Navier slip boundary conditions , 2009 .

[25]  Mario Sigalotti,et al.  Simultaneous approximate tracking of density matrices for a system of Schrödinger equations , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[26]  Hayk Nersisyan,et al.  Global exact controllability in infinite time of Schrödinger equation: multidimensional case , 2012, 1201.3445.

[27]  William Moran,et al.  Simultaneous control problems for systems of elastic strings and beams , 2001, Syst. Control. Lett..

[28]  J. Coron,et al.  On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions , 1996 .

[29]  Jean-Michel Coron,et al.  Partial Differential Equations / Optimal Control On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well , 2005 .

[30]  Marianne Chapouly,et al.  Global Controllability of Nonviscous and Viscous Burgers-Type Equations , 2009, SIAM J. Control. Optim..

[31]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[32]  Jerrold E. Marsden,et al.  Controllability for Distributed Bilinear Systems , 1982 .

[33]  Olivier Glass,et al.  On the controllability of the 1-D isentropic Euler equation , 2007 .

[34]  Nabile Boussaid,et al.  Weakly Coupled Systems in Quantum Control , 2011, IEEE Transactions on Automatic Control.

[35]  M. Hestenes Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. , 1951 .

[36]  Olivier Glass,et al.  On the controllability of the Vlasov–Poisson system , 2003 .

[37]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[38]  Joseph A. Minahan,et al.  THE q-SCHRÖDINGER EQUATION , 1990 .

[39]  Herschel Rabitz,et al.  Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules , 2004 .

[40]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[41]  Mazyar Mirrahimi,et al.  Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.

[42]  O. Glass Controllability and asymptotic stabilization of the Camassa–Holm equation , 2008 .

[43]  Marius Tucsnak,et al.  SIMULTANEOUS CONTROLLABILITY IN SHARP TIME FOR TWO ELASTIC STRINGS , 2001 .

[44]  Claude Le Bris,et al.  Mathematical models and methods for ab initio quantum chemistry , 2000 .

[45]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..

[46]  J. Coron Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels , 1993 .

[47]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[48]  Andrei V. Fursikov,et al.  Exact controllability of the Navier-Stokes and Boussinesq equations , 1999 .