Impact of the Olig Family on Neurodevelopmental Disorders

The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and strictly regulate cellular specification and differentiation. Extensive studies have established functional roles of Olig1 and Olig2 in directing neuronal and glial formation during different stages in development. Recently, Olig2 overexpression was implicated in neurodevelopmental disorders down syndrome (DS) and autism spectrum disorder (ASD) but its influence on cognitive and intellectual defects remains unknown. In this review, we summarize the biological functions of the Olig family and how it uniquely promotes cellular diversity in the CNS. This is followed up with a discussion on how abnormal Olig2 expression impacts brain development and function in DS and ASD. Collectively, the studies described here emphasize vital features of the Olig members and their distinctive potential roles in neurodevelopmental disease states.

[1]  V. Tarabykin,et al.  Olig3 regulates early cerebellar development , 2021, eLife.

[2]  M. Askenazi,et al.  Evolution of neuroinflammation across the lifespan of individuals with Down syndrome. , 2020, Brain : a journal of neurology.

[3]  K. Gardiner,et al.  All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. , 2020, Trends in genetics : TIG.

[4]  G. Annéren,et al.  DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors , 2020, Clinical Epigenetics.

[5]  C. Lord,et al.  Autism spectrum disorder , 2020, Nature Reviews Disease Primers.

[6]  P. ten Dijke,et al.  TGF-β Pathway , 2020, Encyclopedia of Molecular Pharmacology.

[7]  H. Ryu,et al.  Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing , 2019, Clinical Epigenetics.

[8]  M. Huss,et al.  Transcriptome and Proteome Profiling of Neural Induced Pluripotent Stem Cells from Individuals with Down Syndrome Disclose Dynamic Dysregulations of Key Pathways and Cellular Functions , 2019, Molecular Neurobiology.

[9]  Alicia R. Martin,et al.  Identification of common genetic risk variants for autism spectrum disorder , 2019, Nature Genetics.

[10]  C. Eng,et al.  Constitutional mislocalization of Pten drives precocious maturation in oligodendrocytes and aberrant myelination in model of autism spectrum disorder , 2019, Translational Psychiatry.

[11]  B. Nait-Oumesmar,et al.  Hypomyelination and Oligodendroglial Alterations in a Mouse Model of Autism Spectrum Disorder , 2019, Front. Cell. Neurosci..

[12]  S. Nabavi,et al.  Down syndrome: Neurobiological alterations and therapeutic targets , 2019, Neuroscience & Biobehavioral Reviews.

[13]  Jia-wei Zhou,et al.  Neuroinflammation in the central nervous system: Symphony of glial cells , 2018, Glia.

[14]  Ying Liu,et al.  OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. , 2019, Cell stem cell.

[15]  S. Rabbani,et al.  Targeting DNA Hypomethylation in Malignancy by Epigenetic Therapies. , 2019, Advances in experimental medicine and biology.

[16]  V. Costa,et al.  The Multifaceted Role of Annexin A1 in Viral Infections , 2023, Cells.

[17]  C. Schuurmans,et al.  bHLH transcription factors in neural development, disease, and reprogramming , 2019, Brain Research.

[18]  A. Verkhratsky,et al.  Neuroglia in the autistic brain: evidence from a preclinical model , 2018, Molecular Autism.

[19]  A. Dunaevsky,et al.  Pluripotent Stem Cell-Derived Cerebral Organoids Reveal Human Oligodendrogenesis with Dorsal and Ventral Origins , 2018, bioRxiv.

[20]  R. Warta,et al.  Zeb1 potentiates genome‐wide gene transcription with Lef1 to promote glioblastoma cell invasion , 2018, The EMBO journal.

[21]  B. Tycko,et al.  Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models , 2016, Epigenomics.

[22]  K. Ligon,et al.  Post-translational Modifications of OLIG2 Regulate Glioma Invasion through the TGF-β Pathway. , 2016, Cell reports.

[23]  I. Tsigelny,et al.  Molecular mechanisms of OLIG2 transcription factor in brain cancer , 2016, Oncotarget.

[24]  Theo F. J. Kraus,et al.  Epigenetic dysregulation in the developing Down syndrome cortex , 2016, Epigenetics.

[25]  A. Stemmer-Rachamimov,et al.  Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma. , 2016, Cancer cell.

[26]  J. Hecht,et al.  Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. , 2016, Human molecular genetics.

[27]  A. Peters,et al.  Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination , 2016, Neuron.

[28]  K. Miyazawa,et al.  Maid is a negative regulator of transforming growth factor-β-induced cell migration. , 2015, Journal of biochemistry.

[29]  A. Sebastião,et al.  Neuroinflammatory modulators of oligodendrogenesis , 2015 .

[30]  Hui Zhou,et al.  Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region , 2015, Neurobiology of Disease.

[31]  Yuri Kotliarov,et al.  Identification of Molecular Pathways Facilitating Glioma Cell Invasion In Situ , 2014, PloS one.

[32]  D. Rowitch,et al.  An Amino Terminal Phosphorylation Motif Regulates Intranuclear Compartmentalization of Olig2 in Neural Progenitor Cells , 2014, The Journal of Neuroscience.

[33]  Y. Inoue,et al.  Specification of Spatial Identities of Cerebellar Neuron Progenitors by Ptf1a and Atoh1 for Proper Production of GABAergic and Glutamatergic Neurons , 2014, The Journal of Neuroscience.

[34]  J. Rubenstein,et al.  Olig1 Function Is Required to Repress Dlx1/2 and Interneuron Production in Mammalian Brain , 2014, Neuron.

[35]  K. Ligon,et al.  Pten Loss in Olig2 Expressing Neural Progenitor Cells and Oligodendrocytes Leads to Interneuron Dysplasia and Leukodystrophy , 2014, Stem cells.

[36]  N. Kessaris,et al.  New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development , 2014, BMC Neuroscience.

[37]  S. Shi,et al.  Production and organization of neocortical interneurons , 2013, Front. Cell. Neurosci..

[38]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[39]  M. Wegner,et al.  The Transcription Factors Sox10 and Myrf Define an Essential Regulatory Network Module in Differentiating Oligodendrocytes , 2013, PLoS genetics.

[40]  J. Eschbacher,et al.  Reciprocal Activation of Transcription Factors Underlies the Dichotomy between Proliferation and Invasion of Glioma Cells , 2013, PloS one.

[41]  Y. Liu,et al.  hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury , 2013, Nature Communications.

[42]  D. Steindler,et al.  The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance , 2013, EMBO molecular medicine.

[43]  K. Miyazono,et al.  Oligodendrocyte Transcription Factor 1 (Olig1) Is a Smad Cofactor Involved in Cell Motility Induced by Transforming Growth Factor-β* , 2013, The Journal of Biological Chemistry.

[44]  Hongye Liu,et al.  Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2 , 2012, Nature Reviews Neuroscience.

[45]  S. Akbarian,et al.  Epigenetic mechanisms in neurological disease , 2012, Nature Medicine.

[46]  Seungchan Kim,et al.  miRNA Expression Profiling in Migrating Glioblastoma Cells: Regulation of Cell Migration and Invasion by miR-23b via Targeting of Pyk2 , 2012, PloS one.

[47]  Giuseppe Esposito,et al.  OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. , 2012, Human molecular genetics.

[48]  L. Seress,et al.  Impaired myelination of the human hippocampal formation in Down syndrome , 2012, International Journal of Developmental Neuroscience.

[49]  D. Wilcock Neuroinflammation in the Aging Down Syndrome Brain; Lessons from Alzheimer's Disease , 2012, Current gerontology and geriatrics research.

[50]  C. Sagerström,et al.  olig2‐expressing hindbrain cells are required for migrating facial motor neurons , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[51]  T. K. Best,et al.  Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome , 2012, Experimental Neurology.

[52]  R. Reeves,et al.  Trisomy 21 and early brain development , 2012, Trends in Neurosciences.

[53]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[54]  Paul J. Higgins,et al.  PAI-1: An Integrator of Cell Signaling and Migration , 2011, International journal of cell biology.

[55]  K. Miyazono,et al.  TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β , 2011, Cell and Tissue Research.

[56]  Keith L Ligon,et al.  The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. , 2011, Cancer cell.

[57]  S. Davies,et al.  Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury , 2011, PloS one.

[58]  H. Arnold,et al.  The transcription factors Nkx2.2 and Nkx2.9 play a novel role in floor plate development and commissural axon guidance , 2010, Development.

[59]  J. Isaac,et al.  Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome , 2010, Nature Neuroscience.

[60]  M. Ehrlich DNA hypomethylation in cancer cells. , 2009, Epigenomics.

[61]  Christopher M. Taylor,et al.  A Genome-Wide Screen for Spatially Restricted Expression Patterns Identifies Transcription Factors That Regulate Glial Development , 2009, The Journal of Neuroscience.

[62]  E. Holland,et al.  Sonic Hedgehog Pathway Activation Is Induced by Acute Brain Injury and Regulated by Injury-Related Inflammation , 2009, The Journal of Neuroscience.

[63]  David Patterson,et al.  Molecular genetic analysis of Down syndrome , 2009, Human Genetics.

[64]  Su-Chun Zhang,et al.  Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects , 2009, Development.

[65]  Elizabeth M.C. Fisher,et al.  Down syndrome—recent progress and future prospects , 2009, Human molecular genetics.

[66]  M. Schebesta,et al.  olig1 expression identifies developing oligodendrocytes in zebrafish and requires hedgehog and notch signaling , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[67]  Jeremy A. Jones,et al.  Brainstem nuclei , 2009, Radiopaedia.org.

[68]  B. Appel,et al.  Olig2+ Precursors Produce Abducens Motor Neurons and Oligodendrocytes in the Zebrafish Hindbrain , 2009, The Journal of Neuroscience.

[69]  C. Birchmeier,et al.  The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei , 2009, Development.

[70]  Q. Lu,et al.  The Basic Helix-Loop-Helix Transcription Factor Olig2 Is Critical for Reactive Astrocyte Proliferation after Cortical Injury , 2008, The Journal of Neuroscience.

[71]  K. Miyazono,et al.  An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling , 2008, The EMBO journal.

[72]  H. Takebayashi,et al.  Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. , 2008, Developmental biology.

[73]  C. Cordon-Cardo,et al.  Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. , 2008, Cancer research.

[74]  N. Kessaris,et al.  Specification of CNS glia from neural stem cells in the embryonic neuroepithelium , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[75]  J. Rubenstein,et al.  Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain , 2007, Neuron.

[76]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[77]  M. Wegner,et al.  Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. , 2007, Developmental biology.

[78]  Hongye Liu,et al.  Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma , 2007, Neuron.

[79]  M. Götz,et al.  The cell biology of neurogenesis , 2006, International Journal of Developmental Neuroscience.

[80]  H. Wiendl,et al.  Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation , 2006, Experimental Neurology.

[81]  D. Rowitch,et al.  Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  N. Zečević,et al.  Olig Transcription Factors Are Expressed in Oligodendrocyte and Neuronal Cells in Human Fetal CNS , 2005, The Journal of Neuroscience.

[83]  M. Götz,et al.  Developmental cell biology: The cell biology of neurogenesis , 2005, Nature Reviews Molecular Cell Biology.

[84]  M. Mehler,et al.  Combinatorial Profiles of Oligodendrocyte-Selective Classes of Transcriptional Regulators Differentially Modulate Myelin Basic Protein Gene Expression , 2005, The Journal of Neuroscience.

[85]  Ying-Wei Lin,et al.  OLIG2 (BHLHB1), a bHLH transcription factor, contributes to leukemogenesis in concert with LMO1. , 2005, Cancer research.

[86]  J. Goldman,et al.  Olig2 Directs Astrocyte and Oligodendrocyte Formation in Postnatal Subventricular Zone Cells , 2005, The Journal of Neuroscience.

[87]  Alberto C. S. Costa,et al.  Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: A model of Down syndrome , 2005, Neuroscience Letters.

[88]  W. Schulz,et al.  Causes and consequences of DNA hypomethylation in human cancer. , 2005, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[89]  Q. Lu,et al.  Myelinogenesis and Axonal Recognition by Oligodendrocytes in Brain Are Uncoupled in Olig1-Null Mice , 2005, The Journal of Neuroscience.

[90]  Ying-Wei Lin,et al.  OLIG 2 ( BHLHB 1 ) , a bHLH Transcription Factor , Contributes to Leukemogenesis in Concert with LMO 1 , 2005 .

[91]  D. Rowitch,et al.  bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS , 2004, Science.

[92]  Mara Dierssen,et al.  Deficits of neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome , 2004, Brain Research.

[93]  L. Pardo Voltage-gated potassium channels in cell proliferation. , 2004, Physiology.

[94]  T. Kondo,et al.  Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor–induced astrocyte differentiation , 2004, The Journal of cell biology.

[95]  R. Malenka,et al.  Hippocampal Long-Term Potentiation Suppressed by Increased Inhibition in the Ts65Dn Mouse, a Genetic Model of Down Syndrome , 2004, The Journal of Neuroscience.

[96]  D. Rowitch Glial specification in the vertebrate neural tube , 2004, Nature Reviews Neuroscience.

[97]  L. Lotspeich,et al.  White matter structure in autism: preliminary evidence from diffusion tensor imaging , 2004, Biological Psychiatry.

[98]  David J. Anderson,et al.  Deregulation of Dorsoventral Patterning by FGF Confers Trilineage Differentiation Capacity on CNS Stem Cells In Vitro , 2003, Neuron.

[99]  Y. Sawamura,et al.  Expression of the Oligodendroglial Lineage‐Associated Markers Olig1 and Olig2 in Different Types of Human Gliomas , 2003, Journal of neuropathology and experimental neurology.

[100]  Yongsu Jeong,et al.  Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node , 2003, Development.

[101]  M. Greenberg,et al.  Basic Helix-Loop-Helix Factors in Cortical Development , 2003, Neuron.

[102]  David A. Ziegler,et al.  Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. , 2003, Brain : a journal of neurology.

[103]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[104]  Kazuhiro Ishii,et al.  [Down syndrome]. , 2003, Ryoikibetsu shokogun shirizu.

[105]  Martin Raff,et al.  Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells , 2002, Journal of Cell Science.

[106]  Y. Nabeshima,et al.  The Basic Helix-Loop-Helix Factor Olig2 Is Essential for the Development of Motoneuron and Oligodendrocyte Lineages , 2002, Current Biology.

[107]  François Guillemot,et al.  Proneural genes and the specification of neural cell types , 2002, Nature Reviews Neuroscience.

[108]  Y. Nabeshima,et al.  Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube , 2002, Mechanisms of Development.

[109]  David J. Anderson,et al.  Olig genes and the genetic logic of CNS neural cell fate determination , 2002, Clinical Neuroscience Research.

[110]  Tao Sun,et al.  Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection , 2002, Cell.

[111]  David J. Anderson,et al.  The bHLH Transcription Factors OLIG2 and OLIG1 Couple Neuronal and Glial Subtype Specification , 2002, Cell.

[112]  N. Osumi,et al.  Pax6 regulates specification of ventral neurone subtypes in the hindbrain by establishing progenitor domains. , 2002, Development.

[113]  W. Richardson,et al.  Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. , 2002, Development.

[114]  C. Cepko,et al.  Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex , 2001, Nature Neuroscience.

[115]  M. Nakafuku,et al.  Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of Pan-Neuronal and Subtype-Specific Properties of Motoneurons , 2001, Neuron.

[116]  David J. Anderson,et al.  The bHLH Transcription Factor Olig2 Promotes Oligodendrocyte Differentiation in Collaboration with Nkx2.2 , 2001, Neuron.

[117]  N. Kessaris,et al.  Ventral Neurogenesis and the Neuron-Glial Switch , 2001, Neuron.

[118]  T. Jessell,et al.  Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2 , 2001, Neuron.

[119]  Jean-Yves Delattre,et al.  OLIG2 as a specific marker of oligodendroglial tumour cells , 2001, The Lancet.

[120]  D. Rowitch,et al.  Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. , 2001, Development.

[121]  J. Flint Genetic basis of cognitive disability , 2001, Dialogues in clinical neuroscience.

[122]  J. Briscoe,et al.  Specification of neuronal fates in the ventral neural tube , 2001, Current Opinion in Neurobiology.

[123]  M. Dierssen,et al.  Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. , 2001, Journal of neural transmission. Supplementum.

[124]  M. Nakafuku,et al.  Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3 , 2000, Mechanisms of Development.

[125]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[126]  D. Bonneau,et al.  Mutations of the human PTEN gene , 2000, Human mutation.

[127]  S. Thorgeirsson,et al.  Human homologue of maid: A dominant inhibitory helix‐loop‐helix protein associated with liver‐specific gene expression , 2000, Hepatology.

[128]  E. Holland,et al.  Glioblastoma multiforme: the terminator. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  T. Jessell,et al.  A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube , 2000, Cell.

[130]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[131]  Coordinate Regulation , 2000, Science.

[132]  K. Miyazono,et al.  Positive and negative regulation of TGF-beta signaling. , 2000, Journal of cell science.

[133]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[134]  Joanne Chan,et al.  Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System , 2000, Neuron.

[135]  David J Anderson,et al.  Identification of a Novel Family of Oligodendrocyte Lineage-Specific Basic Helix–Loop–Helix Transcription Factors , 2000, Neuron.

[136]  A. Lavdas,et al.  The Medial Ganglionic Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral Cortex , 1999, The Journal of Neuroscience.

[137]  Silvia Arber,et al.  Requirement for the Homeobox Gene Hb9 in the Consolidation of Motor Neuron Identity , 1999, Neuron.

[138]  F. Guillemot,et al.  Mash1 regulates neurogenesis in the ventral telencephalon. , 1999, Development.

[139]  P. Gruss,et al.  Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord , 1998, Mechanisms of Development.

[140]  T. Kadota,et al.  Malignant glioma , 1998, Acta radiologica.

[141]  M. Nakafuku,et al.  Pax-6 is involved in the specification of hindbrain motor neuron subtype. , 1997, Development.

[142]  T. Jessell,et al.  Pax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling , 1997, Cell.

[143]  T. Jessell,et al.  Requirement for LIM Homeobox Gene Isl1 in Motor Neuron Generation Reveals a Motor Neuron– Dependent Step in Interneuron Differentiation , 1996, Cell.

[144]  B T Hyman,et al.  Development of the Superior Temporal Neocortex Is Anomalous in Trisomy 21 , 1994, Journal of neuropathology and experimental neurology.

[145]  C. Disteche,et al.  Down syndrome phenotypes: the consequences of chromosomal imbalance. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[146]  K. Wisniewski,et al.  Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. , 1990, Clinical neuropathology.

[147]  L. Becker,et al.  Dendritic atrophy in children with Down's syndrome , 1986, Annals of neurology.

[148]  M. Marín‐Padilla,et al.  Pyramidal cell abnormalities in the motor cortex of a child with Down's syndrome. A Golgi study , 1976, The Journal of comparative neurology.

[149]  E. Niebuhr,et al.  Down's syndrome , 1974, Humangenetik.