Digital Quantum Simulation of the Schwinger Model with Topological Term via Adiabatic State Preparation

We perform a digital quantum simulation of a gauge theory with a topological term in Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We focus on $1+1$ dimensional quantum electrodynamics with the $\theta$-term known as the Schwinger model. We construct the true vacuum state of a lattice Schwinger model using adiabatic state preparation which, in turn, allows us to compute an expectation value of the fermion mass operator with respect to the vacuum. Upon taking a continuum limit we find that our result in massless case agrees with the known exact result. In massive case, we find an agreement with mass perturbation theory in small mass regime and deviations in large mass regime. We estimate computational costs required to take a reasonable continuum limit. Our results imply that digital quantum simulation is already useful tool to explore non-perturbative aspects of gauge theories with real time and topological terms.

[1]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[2]  Patrick Dreher,et al.  Real time evolution of a one-dimensional field theory on a 20 qubit machine , 2019 .

[3]  M. Dalmonte,et al.  Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for 1+1 QED , 2019, Quantum.

[4]  S. Lawrence,et al.  Parton physics on a quantum computer , 2019, Physical Review Research.

[5]  Jesse R. Stryker,et al.  SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers , 2019, Physical Review D.

[6]  R. Venugopalan,et al.  Deeply inelastic scattering structure functions on a hybrid quantum computer , 2019, 1908.07051.

[7]  K. Jansen,et al.  Topological vacuum structure of the Schwinger model with matrix product states , 2019, Physical Review D.

[8]  S. Takeda Tensor network approach to real-time path integral , 2019, Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019).

[9]  N. Klco,et al.  Minimally entangled state preparation of localized wave functions on quantum computers , 2019, 1904.10440.

[10]  S. Lawrence,et al.  σ Models on Quantum Computers. , 2019, Physical review letters.

[11]  M. Dalmonte,et al.  Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators , 2019, Physical Review X.

[12]  Erik Gustafson,et al.  Quantum simulation of scattering in the quantum Ising model , 2019, Physical Review D.

[13]  Andrew M. Weiner,et al.  Simulations of subatomic many-body physics on a quantum frequency processor , 2018, Physical Review A.

[14]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[15]  Natalie Klco,et al.  Digitization of scalar fields for quantum computing , 2018, Physical Review A.

[16]  P. Hauke,et al.  Dynamical Topological Transitions in the Massive Schwinger Model with a θ Term. , 2018, Physical review letters.

[17]  S. Lawrence,et al.  Simulation of Nonequilibrium Dynamics on a Quantum Computer. , 2018, Physical review letters.

[18]  Claudia Ratti,et al.  Lattice QCD and heavy ion collisions: a review of recent progress , 2018, Reports on progress in physics. Physical Society.

[19]  J. Zeiher,et al.  Quantum Simulation of the Universal Features of the Polyakov Loop. , 2018, Physical review letters.

[20]  E. Solano,et al.  Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.

[21]  Panagiotis Spentzouris,et al.  Electron-Phonon Systems on a Universal Quantum Computer. , 2018, Physical review letters.

[22]  P. Hauke,et al.  Quantum simulation of lattice gauge theories using Wilson fermions , 2018, Quantum Science and Technology.

[23]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[24]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[25]  A. Bermudez,et al.  Quantum sensors for the generating functional of interacting quantum field theories , 2017, 1704.02877.

[26]  Philipp Schindler,et al.  U(1) Wilson lattice gauge theories in digital quantum simulators , 2016, 1612.08653.

[27]  J. Cirac,et al.  Digital lattice gauge theories , 2016, 1607.08121.

[28]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[29]  M. Bañuls,et al.  Chiral condensate in the Schwinger model with matrix product operators , 2016, 1603.05002.

[30]  Gert Aarts,et al.  Introductory lectures on lattice QCD at nonzero baryon number , 2015, 1512.05145.

[31]  E. Rico,et al.  Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. , 2015, Physical review letters.

[32]  A. Bazavov,et al.  Gauge-invariant implementation of the Abelian-Higgs model on optical lattices , 2015, 1503.08354.

[33]  Benni Reznik,et al.  Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices , 2015, Reports on progress in physics. Physical Society.

[34]  U. Wiese Towards quantum simulating QCD , 2014, 1409.7414.

[35]  E. Rico,et al.  Two-dimensional lattice gauge theories with superconducting quantum circuits , 2014, Annals of physics.

[36]  J. Preskill,et al.  Quantum Algorithms for Fermionic Quantum Field Theories , 2014, 1404.7115.

[37]  J Casanova,et al.  Fermion-fermion scattering in quantum field theory with superconducting circuits. , 2014, Physical review letters.

[38]  Frithjof Karsch,et al.  Thermodynamics of strong-interaction matter from Lattice QCD , 2013, 1504.05274.

[39]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[40]  J. Cirac,et al.  Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. , 2012, Physical review letters.

[41]  E. Rico,et al.  Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. , 2012, Physical review letters.

[42]  E. Rico,et al.  Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. , 2012, Physical review letters.

[43]  Benni Reznik,et al.  Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects. , 2012, Physical review letters.

[44]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[45]  John Preskill,et al.  Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..

[46]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[47]  Huey-Wen Lin Review of Baryon Spectroscopy in Lattice QCD , 2011, 1106.1608.

[48]  Martin Lüscher,et al.  Computational Strategies in Lattice QCD , 2010 .

[49]  Yoshifumi Nakamura,et al.  Dynamical QCD simulation with theta terms , 2008, 0802.1470.

[50]  C. Adam Normalization of the chiral condensate in the massive Schwinger model , 1998, hep-th/9806211.

[51]  C. Adam,et al.  Massive Schwinger Model within Mass Perturbation Theory , 1997, hep-th/9704064.

[52]  J. Oitmaa,et al.  Series expansions for the massive Schwinger model in Hamiltonian lattice theory , 1997, hep-lat/9701015.

[53]  Y. Hosotani Gauge Theory Model -- quark dynamics and anti-ferromagnets , 1996, hep-th/9606167.

[54]  A. Matytsin,et al.  Screening versus confinement in 1 + 1 dimensions , 1995, hep-th/9511104.

[55]  J. Hetrick,et al.  The Massive multi - flavor Schwinger model , 1995, hep-th/9502113.

[56]  Hosotani,et al.  QED on a circle. , 1988, Physical review. D, Particles and fields.

[57]  F. Wilczek,et al.  Lattice fermions. , 1987, Physical review letters.

[58]  K. Fujikawa Path Integral Measure for Gauge Invariant Fermion Theories , 1979 .

[59]  S. Coleman More About the Massive Schwinger Model , 1976 .

[60]  L. Susskind,et al.  Charge shielding and quark confinement in the massive schwinger model , 1975 .

[61]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[62]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[63]  R. Rodriguez Confinement and Chiral Dynamics in the Multi-flavor Schwinger Model , 1996 .

[64]  T. Blum The QCD Equation of State from the Lattice. , 1996 .

[65]  N. Manton The Schwinger model and its axial anomaly , 1985 .

[66]  M. P. Fry Gauge Invariance and Mass. , 1968 .