Single nanowire photoconductive terahertz detectors.

Spectroscopy and imaging in the terahertz (THz) region of the electromagnetic spectrum has proven to provide important insights in fields as diverse as chemical analysis, materials characterization, security screening, and nondestructive testing. However, compact optoelectronics suited to the most powerful terahertz technique, time-domain spectroscopy, are lacking. Here, we implement single GaAs nanowires as microscopic coherent THz sensors and for the first time incorporated them into the pulsed time-domain technique. We also demonstrate the functionality of the single nanowire THz detector as a spectrometer by using it to measure the transmission spectrum of a 290 GHz low pass filter. Thus, nanowires are shown to be well suited for THz device applications and hold particular promise as near-field THz sensors.

[1]  H. Tan,et al.  Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. , 2014, Nano letters.

[2]  R. Hauge,et al.  Carbon nanotube terahertz detector. , 2014, Nano letters.

[3]  Lucia Sorba,et al.  Detection of a 2.8 THz quantum cascade laser with a semiconductor nanowire field-effect transistor coupled to a bow-tie antenna , 2014 .

[4]  A. Krotkus,et al.  Strong terahertz emission and its origin from catalyst-free InAs nanowire arrays. , 2014, Nano letters.

[5]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[6]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[7]  L. Wernersson,et al.  Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy , 2013 .

[8]  J. Etheridge,et al.  Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. , 2013, Nano letters.

[9]  D Coquillat,et al.  Nanowire-based field effect transistors for terahertz detection and imaging systems , 2013, Nanotechnology.

[10]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[11]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[12]  G. Abstreiter,et al.  Ultrafast photocurrents and THz generation in single InAs‐nanowires , 2013, 1502.03782.

[13]  N. Jiang,et al.  Direct-write non-linear photolithography for semiconductor nanowire characterization , 2012, Nanotechnology.

[14]  Chennupati Jagadish,et al.  Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires , 2012 .

[15]  Dominique Coquillat,et al.  Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. , 2012, Nano letters.

[16]  M. Toimil-Molares,et al.  Efficient terahertz emission from InAs nanowires , 2011, 1109.0355.

[17]  Aurèle J. L. Adam,et al.  Review of Near-Field Terahertz Measurement Methods and Their Applications , 2011 .

[18]  H. Tan,et al.  III–V semiconductor nanowires for optoelectronic device applications , 2011, 2013 International Conference on Microwave and Photonics (ICMAP).

[19]  John E. Cunningham,et al.  On-chip terahertz systems for spectroscopy and imaging , 2010 .

[20]  Chennupati Jagadish,et al.  Unexpected benefits of rapid growth rate for III-V nanowires. , 2009, Nano letters.

[21]  Chennupati Jagadish,et al.  Photoconductive response correction for detectors of terahertz radiation , 2008 .

[22]  Prashanth C. Upadhya,et al.  Terahertz evanescent field microscopy of dielectric materials using on-chip waveguides , 2008 .

[23]  Chennupati Jagadish,et al.  Transient Terahertz Conductivity of GaAs Nanowires , 2007 .

[24]  J. Lloyd‐Hughes,et al.  An ion-implanted InP receiver for polarization resolved terahertz spectroscopy. , 2007, Optics express.

[25]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[26]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[27]  Claude Boccara,et al.  THz near-field optical imaging by a local source , 2006 .

[28]  L. Lauhon,et al.  Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires , 2006 .

[29]  Michael Nagel,et al.  Integrated THz technology for label-free genetic diagnostics , 2002 .

[30]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[31]  M. Tani,et al.  Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses , 2000 .

[32]  M. D. Janezic,et al.  Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements , 1999 .

[33]  Martin Koch,et al.  THz near-field imaging , 1998 .

[34]  X. Zhang,et al.  Broadband detection capability of ZnTe electro-optic field detectors , 1996 .

[35]  A. Krotkus,et al.  Picosecond carrier lifetime in GaAs implanted with high doses of As ions: An alternative material to low‐temperature GaAs for optoelectronic applications , 1995 .

[36]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[37]  D. Auston Picosecond optoelectronic switching and gating in silicon , 1975 .