2D crystals of transition metal dichalcogenide and their iontronic functionalities

2D crystals based on transition metal dichalcogenides (TMDs) provide a unique platform of novel physical properties and functionalities, including photoluminescence, laser, valleytronics, spintronics, piezoelectric devices, field effect transistors (FETs), and superconductivity. Among them, FET devices are extremely useful because of voltage-tunable carrier density and Fermi energy. In particular, high density charge accumulation in electric double layer transistor (EDLT), which is a FET device driven by ionic motions, is playing key roles for expanding the functionalities of TMD based 2D crystals. Here, we report several device concepts which were realized by introducing EDLTs in TMDs, taking the advantage of their extremely unique band structures and phase transition phenomena realized simply by thinning to the monolayer level. We address two kinds of TMDs based on group VI and group V transition metals, which basically yield semiconductors and metals, respectively. For each system, we first introduce peculiar characteristics of TMDs achieved by thinning the crystals, followed by the related FET functionalities.

[1]  C. Adachi,et al.  p‐i‐n Homojunction in Organic Light‐Emitting Transistors , 2011, Advanced materials.

[2]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[3]  J. Misewich,et al.  Superconductor–insulator transition in La2 − xSrxCuO4 at the pair quantum resistance , 2011, Nature.

[4]  Richard H. Friend,et al.  Spatial control of the recombination zone in an ambipolar light-emitting organic transistor , 2006 .

[5]  Richard H. Friend,et al.  Electronic properties of intercalation complexes of the transition metal dichalcogenides , 1987 .

[6]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[7]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[8]  L. J. Sham,et al.  Charge-density wave stacking order in 1 T-Ta 1-x Zr x Se 2 : Interlayer interactions and impurity (Zr) effects , 1976 .

[9]  R. Somoano,et al.  The alkaline earth intercalates of molybdenum disulfide , 1975 .

[10]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[11]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[12]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[13]  S. Iwamoto,et al.  Circularly-polarized light emission from semiconductor planar chiral photonic crystals , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[14]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[15]  Xiaodong Xu,et al.  Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. , 2014, Physical review letters.

[16]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[17]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Shoji Tanaka,et al.  Electronic Conduction in the Commensurate Charge Density Wave State of 1T-TaS2 , 1984 .

[19]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[20]  H. Asanuma,et al.  Electric Double Layer Transistor of Organic Semiconductor Crystals in a Four-Probe Configuration , 2007 .

[21]  A. Madhukar Structural classification of layered dichalcogenides of group IV B, V B and VI B transition metals , 1975 .

[22]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[23]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[24]  Yoshihiro Iwasa,et al.  Ambipolar Light‐Emitting Transistors of a Tetracene Single Crystal , 2007 .

[25]  Xiaodong Xu,et al.  Vapor-solid growth of high optical quality MoS₂ monolayers with near-unity valley polarization. , 2013, ACS nano.

[26]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[27]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[28]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[29]  A. Fujiwara,et al.  Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 , 2014, Scientific Reports.

[30]  Kenji Watanabe,et al.  Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. , 2015, Nano letters.

[31]  Shameek Bose,et al.  Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa₂Cu₃O(7-x) films. , 2011, Physical review letters.

[32]  Y. Tokura,et al.  Two-Dimensional Valley Electrons and Excitons in Noncentrosymmetric 3R−MoS2 , 2015, 1502.07480.

[33]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[34]  Shiyan Li,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[35]  Hongtao Yuan,et al.  Liquid-gated interface superconductivity on an atomically flat film. , 2010, Nature materials.

[36]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[37]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[38]  Y. Tokura,et al.  Gate-tunable gigantic lattice deformation in VO2 , 2014 .

[39]  N. V. Smith,et al.  Spin-orbit coupling in the band structure of reconstructed1T-TaS2 , 2006 .

[40]  Timur K. Kim,et al.  Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor , 2014, Nature Physics.

[41]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[42]  Kamran Behnia,et al.  Field-induced polarization of Dirac valleys in bismuth , 2011, Nature Physics.

[43]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[44]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[45]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[46]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[47]  G. Rao,et al.  Superconductivity in alkaline earth metal and Yb intercalated group VI layered dichalcogenides , 1974 .

[48]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[49]  A. Zettl,et al.  Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. , 1994 .

[50]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[51]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[52]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[53]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[54]  R. Somoano,et al.  Physics and chemistry of MoS2 intercalation compounds , 1977 .

[55]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[56]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[57]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[58]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[59]  T. Hatano,et al.  Gate Control of Electronic Phases in a Quarter-Filled Manganite , 2013, Scientific Reports.

[60]  H. Takagi,et al.  Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2 , 2012 .

[61]  D. Twitchen,et al.  Generation, transport and detection of valley-polarized electrons in diamond. , 2013, Nature materials.

[62]  Wei Zhang,et al.  Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits , 2010 .

[63]  Optimal loading of molecular bonds. , 2012, Nano letters.

[64]  O. Sakata,et al.  High‐Angular‐Resolution Microbeam X‐Ray Diffraction with CCD Detector , 2010 .

[65]  Sami Elhag,et al.  Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film , 2006 .

[66]  S. Wagner,et al.  pn junctions in tungsten diselenide , 1983 .

[67]  Alan J. Heeger,et al.  Light emission from an ambipolar semiconducting polymer field-effect transistor , 2005 .

[68]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[69]  N. Trivedi,et al.  Emergence of a Novel Pseudogap Metallic State in a Disordered 2D Mott Insulator , 2013, 1303.0649.

[70]  D. Costanzo,et al.  Electrostatically induced superconductivity at the surface of WS₂. , 2015, Nano letters.

[71]  D. Mihailovic,et al.  Ultrafast Switching to a Stable Hidden Quantum State in an Electronic Crystal , 2014, Science.

[72]  Masashi Kawasaki,et al.  Insulator-to-metal transition in ZnO by electric double layer gating , 2007 .

[73]  F. Gamble Ionicity, atomic radii, and structure in the layered dichalcogenides of group IVb, Vb, and VIb transition metals , 1974 .

[74]  J. Bourgoin,et al.  Charge-density waves and localization in electron-irradiated 1 T − T a S 2 , 1981 .

[75]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[76]  M. Shayegan,et al.  Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. , 2002, Physical review letters.

[77]  L. Patthey,et al.  Quantitative vectorial spin analysis in angle-resolved photoemission: Bi ∕ Ag ( 111 ) and Pb ∕ Ag ( 111 ) , 2008 .

[78]  L. Gu,et al.  Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide , 2011, Science.

[79]  Helmuth Berger,et al.  Mono- and bilayer WS2 light-emitting transistors. , 2014, Nano letters.

[80]  S. Parkin,et al.  Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ionic liquid gating , 2015, Proceedings of the National Academy of Sciences.

[81]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[82]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[83]  J. Wilson,et al.  Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides , 1975 .

[84]  Y. Tokura,et al.  Electrically tunable anomalous Hall effect in Pt thin films. , 2013, Physical review letters.

[85]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[86]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[87]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[88]  G. Burkard,et al.  Monolayer MoS 2 : Trigonal warping, the Γ valley, and spin-orbit coupling effects , 2013, 1304.4084.

[89]  Anisotropic electrical spin injection in ferromagnetic semiconductor heterostructures , 2002, cond-mat/0201377.

[90]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[91]  E. Tosatti,et al.  Charge carrier localization in pure and doped 1T-TaS2 , 1979 .

[92]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[93]  Hongtao Yuan,et al.  Zeeman-type spin splitting controlled by an electric field , 2013, Nature Physics.

[94]  L. Schlapbach,et al.  Interplane coupling in the quasi-two-dimensional 1 T − TaS 2 , 2003 .

[95]  J. Wilson,et al.  Localization of Conduction Electrons by Fe, Co, and Ni in 1 T -Ta S 2 and 1 T -Ta Se 2 , 1976 .

[96]  L. Forró,et al.  Spectral Consequences of Broken Phase Coherence in 1T-TaS2 , 1998 .

[97]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[98]  A. Ghorayeb,et al.  Thermal and transport evidence for a phase transition in 1T-TaS2 observed at 282K upon warming , 1984 .

[99]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[100]  Hongtao Yuan,et al.  Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. , 2011, Nature nanotechnology.

[101]  M. Fuchter,et al.  Induction of Circularly Polarized Electroluminescence from an Achiral Light-Emitting Polymer via a Chiral Small-Molecule Dopant , 2013, Advanced materials.

[102]  W. Ossau,et al.  Detection of electrical spin injection by light-emitting diodes in top- and side-emission configurations , 2003 .

[103]  Wold,et al.  Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. , 1987, Physical review. B, Condensed matter.

[104]  R. D. Jonge,et al.  Trigonal-prismatic coordination in solid compounds of transition metals , 1971 .

[105]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[106]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[107]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[108]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[109]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[110]  B. L. Evans,et al.  Exciton spectra in thin crystals , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[111]  H. Namatame,et al.  Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center. , 2011, The Review of scientific instruments.

[112]  S. Hotta,et al.  Ambipolar Organic Single‐Crystal Transistors Based on Ion Gels , 2012, Advanced materials.

[113]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[114]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.